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ABSTRACT

Physical data obtained on various-sized equipment must be
correlated in an orderly manner to establish general physical laws
or equations governing the phenomena. Dimensional analysis presents
a mathematical procedure for this correlation. Usual procedures have
been modified in viewpoint and a so-called ARDA dimensional analysis
method of mathematical attack is presented in encyclopedic format,.
The methods of application to such domains of physical knowledge as
fluid drag, bubble mechanics and nucleation, convection heat transfer
and tank pressurization.
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SYMBOLS AND NOTATION

Symbols. Symbols adopted as preferred are those that experience
indicates are best to facilitate presentation of the subject and repre-
sent a composite adaption of the various terminology of the literature.

Also given secondarily are symbols in extensive current use at NASA -
MSFC and in current usage,

Detailed lists of symbols are under Symbols.

System of Units. In general the engineering system of units is used
throughout because its familiarity aids in visualizing physical phenomena.
Moreover, a generalized engineering system is used in which there is no
restriction on the number of physical properties considered to be basic. .
Thus, relationships are expressed in 1bf, lbm, ft and sec which might be
termed an engineering FMLT system.
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ARRANGEMENT RELATIONSHIPS FOR DIMENSIONAL ANALYSIS
(ARDA)

Revised 1967 Edition
SUMMARY

ARDA concepts in dimensional analysis, by introducing new
viewpoints and procedures, make possible simpler and yet at the same
time more comprehensive formulation of physical laws governing
complex processes. The ARDA designation signifies Arrangement of
Relationships in Dimensional Analysis (1). Introduction of this analyt-
ical technique minimizes the empirical data required, and the inherent
similarity involved also permits small-scale model testing to replace
many full-scale operating evaluations.

The method is applied to establish such general relationships as
the domain of drag on bodies immersed in fluids.

The development differs somewhat from previous treatments.
In the literature the classic work of Bridgman (1) in 1931 has been

amplified by Langhaar in 1951 (2), Sedov in 1959 (3), and Ipsen (4) in
1960.

In general the previous attacks have been based on adoption of
an MLT system of units with force F defined in terms of mass m, or an
FLT system of units with m defined in terms of F. This adoption of a
system of units having a limited number of fundamental dimensions has
limited the scope of dimensional analysis to a series of somewhat
individual solutions to special problems, with inherent confusion and
limitation in comparing the findings of one investigator on one physical
problem with those of a different investigator on a different physical
problem.

With respect to dimensions, mass, force and weight are recognized
as fundamental properties. The English engineering system is used in
which these properties are always distinguished from each other and
clearly indicated as lbm mass, lbf force and lbw weight, respectively.



ACCELERATION

An end result of dimensional analysis procedures is the obtaining
of dimensionless numbers or parameters in which the units of the numer-
ator are the same as the units of the denominator. Expressions involving
these dimensionless numbers are perfectly general and may, therefore,
be utilized in any consistent system of units.

An encyclopedic format is adopted so that each topic is discussed
under its alphabetical title.

ACCELERATION. Newton's acceleration law written as a unit-consistent
equation in engineering units is:

F 1bfs= m lbm N ft
32.2 lbm ft SeCZ

1bf sec?

The modern practice of distinguishing mass from force by the use of the
terms 1lbm or 1bf is most important and has been adopted. This agrees
with the modern metric system in which the force unit newton or N is
clearly distinguished from the mass unit kg preferably written as kgmass
or kgm. The force unit kg is no longer recommended but where used
should be clearly designated as a force unit by use of the term kgf.

The previous equation does not contain weight w or gravity g. For a
discussion of weight see under Weight.

ADVANCE RATIO. See Strouhal Number.

ASSOCIATIVE METHOD. The usual method in dimensional analysis is
to assume that one property is a function of other properties and evaluate
exponents to find a general relation of dimensionless numbers. This
may be designated as the direct method.

The direct method. Many examples are given in this text in the domains
of bubble mechanics, combustion, convection heat transfer, drag,
elasticity, electromagnetic phenomena, magneto-hydrodynamics, nuclea-
tion, pressurization, propellor, etc.

As an example, for the drag domain if

(%) = C(T)? (9)° (up) € (LE) D ()€ (D) (go) B (p) P



ASSOCIATIVE METHOD

Then,

d
Eu = C(We)® (Fr)P (Re)C (%)

It will be observed from this example and from many other examples that
the inclusion of certain physical properties in the first equation will lead
to certain dimensionless numbers in the final relationship in which these
physical properties are involved.

The property (%) leads to the Euler number

The property T leads to the Weber number
The property g leads to the Froude number
The property pf leads to the Reynolds number

The property L leads to the <%> number

The remaining properties are included in the preceding numbers so that
all properties appear in the final result.

The other domains indicate many other relations as for example Ng in the
Strouhal number, U in the Damkohler number, etc.

The associative method. An alternate method now suggests itself. In

this method it appears that with experience one could examine the original
properties and because of the known association of certain dimensionless
numbers with physical properties, write the final equation directly in terms
of usual basic dimensionless numbers. In the case of physical properties

for which corresponding dimensionless numbers are not known it is necessary
to go through the basic ARDA dimensional analysis procedure.

General law of dimensional analysis. A general law may be stated that for
all phenomena the general property function equation

A=1B, C, D, E....)
results in the general dimensionless number equation:
a b c
N = C(Ny) (Np) " (N3) ...

In any particular application or domain, only a few properties
involved in that particular application or domain are included, thus,




BOND NUMBER

resulting in a dimensionless number equation with relatively few terms.
These particular equations might be considered to be special cases of
the general all inclusive equations where the exponents are zero so that
the value of the property raised to the zero power is unity.

A study of the various domain equations with respect to the dimension-
less number related to a physical quantity resulted in a tabulation given
under the heading Dimensionless Numbers Associated with Properties.

It should be remembered that L. and D are frequently interchangeable.
L. is usually a representative length which when a diameter is present
is a D. In the form of L* an area A may be indicated. In the form of
L2 or LA a volume may be indicated. Frequently L/t is a velocity v.

BOND NUMBER.

Bo units in terms of weight.

Bond Number
Bo =

dimensionless

ft

Bond number as a force ratio.

Force of Gravity

Bo = -
Surface Tension Force

Bo units in terms of density.

w _ w (Fr)
TL  TL (Fr)

Bo =




BUBBLE MECHANICS DOMAIN

(pv2 L)

_(We) _\ Tg¢

SFED [
gL)

-pLl g
Tge

[ sometimes used]

Bo measures the effect of gravity and surface tension where velocities
are insignificant.

We measures the effect of surface tension of moving fluids where velocity
effects are of importance.

Fr measures the effect of gravity on moving fluids.

In same equation Bo or [ (We)/(Fr)] can be used, but the use of all these
would result in redundancy.

BUBBLE MECHANICS DOMAIN. ARDA analysis gives:

VL>
b

Derivation of general bubble mechanics domain. The work of Steele
(12, p. 15) is of interest.

lﬁ)- A A ALY A T lbm ft \®
it )7 Z\P TP b bsec ) \#sec?) \BC Tpfsect
£ h i '
1bf sec 1bf \8 Btu J
o) 2 () 22 o)
k m n T
ft Btu Btu
<VL sec> <DC ft) <CP 1bm Fabs) <k hritF abs)

sec \S
(3600 hT >

where the usual notation is supplemented by

' L
C = fcn(Fr, We, Re, Eu, Nu, Pr, —,
D v

Dy and D¢ = bubble and container diameters respectively

V}p and v, = bubble velocity referred to fluid and to container
wall respectively.




BUBBLE MECHANICS DOMAIN

ft -l1=-3a+b+ctd+e-2f-2g+h+k+m-r
= (+3f+3g -3 -3n)+b(-2d -2g -f -k+2+n)+d
+(f+g-1)-2f-2g+h+k+m+ (-j+n)
0=f-1l-n+b-d+h+m - b=-f+1+n+d-h-m+t]j
sec 0=z-c-2d-2et+tf-k+s
=-c-2d-2f-2g+2+f-k+tn c=-2d -2g-f-k+2+n
lbm O=a+e-n :
=atf+g-1-n a=-f-g+1l+n
1bf l:—e+f+g‘ e=f+g-1
Btu 0=n+r+i}' s=n
hr O=-r-s-1
O0=-j+n-n-i i=-j
F abs O=-n-1r+]j i=r-n
~-f-g+1l+n -f+l+n+td-h-m+]j -2d-2g-f-k+2+n, d
T =c(p)” & (Dp,) Jvp) 8 (g)
f+g-1 f h, -] j k m n j-n n
(80) T8 Thy PEWT (@7 (AT (v ) (D) (ep) (1)) T (3600)
gc T _Cngd Hfgcfpgcg_]-‘_hkATJV_Iik_D_gm
PV Dy v’ ) \evbDp/ \Pvb’) \Pp/ \aDp/ \vp/ \Db

3600 PVbDbCp o
k
(L)h (XL k(RQ i
1l _c Dp/ \vp /) \DPbp

We) = "l irnd(Re)! (Ew)E (Nu)y) (Pe)®

where (Pe) = (Re) (Pr)

(&) &)

=C 3
(Fr)® (Re)P (Eu) 8 (Nu)p (Pr)?
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&) (=)

=C d b
(Fr) (Re)P (Ew)® (Nu),” (Pr) T

where m = -h

g h
C = (Fr)* (We)® (Re) (Ew)® (Nu),,® (pr)f@:;) <.}I§.>

where exponents are new.

This is the general drag equation discussed under Drag if the heat
transfer terms and relative velocity terms are negligible, i.e.,

(Nu)p,© = (Nu)y,? =1

(Pr)f = (Pr) =1

h
LY (Y o,
\Vb Vb
D VL |
The terms T and e seldom appear in correlations.
. b v

Rohsenow correlation

C = (Re)? (Pr)? (Nw)©

Foster-Zuber

Nuy, = 0. 0015(Re)*®? (Pr)

Usiskin and Seigil

0. 02080 = (ﬂ-e-)= Bo
Fr
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Zuber

Cole

1 1

(0. 040)%2 ~ (We)o® (F)>*

ARDA derivation of simple bubble mechanics relation. The preceding
general relation contains many factors. If less factors are included a
simpler relation is obtained which may be considered to be the general
domain equation with certain less important parameters omitted. As
a result of ARDA dimensional analysis which follows:

C )2

[(Fn)* (We)® (Re)® (Ew)?]

The motion of a bubble or sphere in a fluid depends on properties of the
fluid and conversion factors as follows:

F = force, 1bf

L or D = diameter, ft. Use D for diameter

L in velocity %

2
L% in pressure, P =

L"N|"rj

L? in volume

v = velocity,

sec
p = A(%;.) = difference in density between inside and outside
fluids, =2
ft
b = ps = viscosity outside fluid, E’—i%g
t
. . . ft
g = gravity or acceleration field, —
sec



BUBBLE MECHANICS DOMAIN

. 1bm ft ..
gc = conversion factor, 32.2 ——IE——E . This is an unvarying
1bf sec
conversion factor, used in the same manner as
ft 1bf
J =778
Btu
T = surface tension, lft—;;-

The relation obtained may also be valid as a general equation for interface

or interface phenomena although some extension of theory may be
required.

The general relationship may be written:

T = fcn(F, L, v, Py Hs & gc)) or
c d e f
1bf a b ft 1bm 1bf sec it
=) = T —_— fkdadiid
T(ft> C(F 1bf) (L ft) (Vsec) (p ft3> (u e ) (g Secz)
(g 1bm ft |8
€ 1bf sec?

The individual unit-properties and exponents on each side of the equation
must be equal. For example, for 1bf:

Ibf! = 1bf> €8

Writing the equality for the exponents above, for each one of the unit-
properties such as 1lbf, lbm, sec and ft:

H)i l=a+e-g g=a+e—l
Ibm 0=d+ g d==-g=1-a-e
sec 0=-ct+te- 2f - 2¢g c=e-2f - 2¢g
=e~-2f+ 2 - 2a - 2e
= -e -2f+ 2 - 2a
_ii -l=b+c-3d—Ze+f+g
~-l=b-e-2f{+2-2a-3+3a+3e-2e+f+a+e-1
O=b+e-~-f -1+ 2a b=1+f-¢e - 2a




BUBBLE MECHANICS DOMAIN

Then,

T:C(F)a(L)l+f - e - Za(v)-e -2f+ 2 - Za(p)l -a - e(“)e

(g)f(gc)a +e-1

Tee | | E&e ® [pg 1°fer 1
pveéL| ~ p L°v*® pvL v

(We)' = G(Ew)® (Re) ™€ (Fr)

(Re)a (Fr)b General Bubble

We =
e=C c Mechanics Domain
(Eu)

where exponents have been re-designated.

This relation can also be written in the form of the general bubble mechanics
domain equation with certain terms omitted. ’

C = (Fr)® (We)? (Re)S (Ew)®

Simple bubble mechanics equations by association. This is designated as
the ARDA Associative Method. It is alternate to the ARDA basic method
using applicable dimensionless numbers from the table on the following page.

IT=fen[F, L, v, p» t g Ecl

F Also
T = fcn (W) (g) —
M g LZ Vs P» gc '
Velocity,
f
STti:i(;Z Viscosity\ /Gravity\ /Pressure\[ Diameter
= fcn Related Related Related or Length
Related
Number /\Number/\ Number /\g. Related
Number C
Numbers
(We) = fen[ (Re)(Fr)(Eu)(Eu, Re, or Fr)]

¢l (Re)® (Fr)° (Eu)©]

10
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TABLE

I

1

Weber
Number
Dimensionless

Euler
Number
Dimensionless

(Eu)

Reynolds
Number

Dimensionless |

Froude
Number
Dimensionless

H

BASIC BUBBLE MECHANICS

Surface
Tension
Related
Number

Pressure
Related
Number

TN
N——

Drag
Related
Number

SN——

Viscosity
Related
Number

P
SN——

Gravity
Related
Number

NN

Velocity
Related
Number

/_-\
~—eeer”. e’

Diameter
or Length
Related
Number

gc
Related
Number

11

BUBBLE MECHANICS DOMAIN

DIMENSIONLESS NUMBERS

T
= _If_g_zq where P = —2—
pv R
- - for bubble
= &g§ where P = —F—‘Z- for drag
pv L
L -
_ pvD
_P-gc

gD

I
—
<
~N
—

We or (Eu = Cp)

Any of We, Eu, Cp, Re,
Fr

= Any of We, Eu, Cp, Re
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or

we = [ (Re)* (Fr)° (Ew°]

To utilize this procedure one must know that the preceding dimensionless
numbers are basic as determined by the basic ARDA procedure.

However, having determined this for bubble analysis, perhaps the as soci-
ations involved may be of use in the analysis of new problems.

Flow region 1. If (Eu) = (Ew® =1 = (Cp)° and (We)d = (We)? = 1,
the general fluid mechanics domain equation becomes:

(Re)* (Fr)°

0~
(We)' = C Cp)

Experimental evidence as embodied in Stokes Law (Ref. 10.a. 16)
indicates a=b =1 and C = 9.

1 = 9[(Re)(Fr)] for Re < 2
o [(PEe vt
pLv (Eﬁ
pvec)
9(PL2g> =960

where St (Stokes Number Dimensionless) is the name that will be
assigned to this value.

1

Stokes law is generally accepted and is evidently defined by the following
relations:

(We)® (Cp)° = 9(Re)(Fr)
Region 1
or Stokes' Law
Re < 2

(Re)(Fr) = 9(St) =1

Nl

The first equation may be preferable in that it is stated that Stokes law

1 . . . .
St = (Re)(Fr) = = is valid in Region 1, a region in fluid mechanics in
9 g g

which (We)d = (We)? = 1 and (CD)C = (Cp)°® = 1 or that Stokes law is

12




BUBBLE MECHANICS DOMAIN

independent of We and Eu or Cpy. All the implications of this last
statement are not fully understood at the present writing, but experi-

mentally Stokes law appears to limit Region 1 to a region in which
Re < 2. '

The following experimental relation also quoted from Ref. 10 & 16
may also be of interest.

24

Flow region 2. If (We)d = (We)® = 1 and (Fr)P = (Fr)° = 1, the
general fluid mechanics domain equation becomes:

(Re)® (Fr)°
(Cp)°©

(We)? = C

1/

Cp = (C) c(Re)a/c

Experimental evidence by Lapple and Shephard (Ref. 10 & 16) indicates

Cp = (%1>(Re)‘0'68: 9.35 (Re)°®® for 2 < Re < 720

for Re = 2 to Re = 720 for instance.

The 2 factor was introduced because of a 2 in the Lapple-Shephard drag
formula.

Region 2 equation is then

_ (Fr)°
D=7 (Re)™"* (We)® Region 2
2 < < 72
__9.35 Re < 720
" (Re)™?3

Flow region 3. If (Eu)® = (Ew)® = 1 and (Fr)” = (Fr)® = 1, the
general fluid mechanics domain equation becomes

(Re)® (Fr)° _

(We)=C—W——

C

13
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Experimental evidence by Kaissling and Rosenberg (Ref. 10 & 18)
indicates

1
2 1
Re = 1.91[—Dp—T-g-£} = 1.91[ (We)(Re)*] ?
Hf B¢
1
We=—7
(1.91) Region 3
0 0 720 < Re
(We) = (Re)’ (Fr)

(1.91)* (Eu)°

Evidently (Re)aL also = (Re)? = 1.

Flow region 4. If (Re)a = (Re)® = 1 and (Eu)C = (Eu)® = 1, the
general fluid mechanics domain equation becomes:

b
_ . (Re)® (Fr) _ b ‘
(We) =C ——(E—u)o—‘— = C(Fr) Reglon 4A
Ifb=1
C = XV__e = Bo = Bond Number.
Fr

This equation was obtained by another derivation under the heading
Bond Number.

According to Fritz (Ref. 10, p 20) for Re > for liquid N, at 14. 7 psia
139 F abs

1=1. 20[%%9]0'25
1 =(1.20)* [%%9] = (1.20)4[%%} [%122]
= (1. 20)* (_W—Jl(?r_)
1.20)*
e L(F—H)— Region 4
(We) = (L. 20yt (Bel(Fx)? Re > 2500

(Eu)

Summary of regions in flow domain. The preceding is summarized
in a table as follows:

14




BUBBLE MECHANICS DOMAIN

TABLE GENERAL BUBBLE MECHANICS DOMAIN
a b a b
General Equation is: (We)d =C (Re) (l';r) =C (Re) (Fcr)
(Eu) - (Cp)
"Dimensionless Number Weber Reynolds | Froude Euler (Eu) = (Cp)
(We) (Re) (Fr)
pv’ D pvD _ﬁ Pgce
Tgc e 8 gD pv?
Principal Controlling Factor in T Mf g Eu Cp=Eu
Dimensionless Number Surface | Viscosity | Gravity _2T P _F
Tension _ "R L*
Bubble Drag
Pressure
Region
Solid 1. pand g control v 1 = C(Re) (Fr) i
Sphere = C(St)
Re < 2 Stokes Law (We)?=1 (Stokes Law) (Cp)=1
2. p controls v 1 Re = 1 C(Cp)°©
(Lapple and Shephard Equation)
Bubble g and ¢ negligible (We) =1 (Fr)°=1
in (Re 2 to 720)
Dense
Fluid 3. T controls v (We) = C(1)
(Kaissling and Rosenberg Tests)
p, g and P negligible (Re)’=1 | (Fr)°=1 (Eu)®=1
(Re 720 to 2500)
Bubble in 4. T and g important (We) = C(Fr)b
.Gas or : (Bond Number - Fritz Relation)
Vapor p and Pnegligible (Re)°=1 , (Eu)’=1
Interface (Re > 2500)
-Phenomena

15
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BUBBLE MECHANICS DOMAIN

The empirical equations for the four regions are:
1
1. (Re)(Fr) = 3

2. (Re)(CD)UO.éS = (9. 35)/0-68

4., (We)(Fr) = (1.20)*

The preceding may be combined into the following general equation:
< a
(CD)1/0.68 , \
' .91 .2
((9. 35)170-88 (1. 91)2 (1. 20)* (9) (1.91)" (1. 20)* (9)(Re)

Fr b d
((1'91)2(1020?) <(1.91)2We> =1

where for

region 1 a=b>h c=d=0
region 2 a=zc=1 b=d=0
region 3 d=1 a=b=c=0
region 4 b=d=1 a=c=0

This appears to indicate that a general domain equaticn should have the
form

d
(CCp)¢ (CRe)* (CFr)° (CWe)® = C
where C represents different constants rather than the more usual form
a b c
We = C(Re) (Fr) (Eu)

Similarity and model testing require that the preceding dimensionless
relationships be obtained. The table is useful in indicating test possi-
bilities in each of the four regions and procedures in correlation.

16




BUBBLE PRESSURE

BUBBLE PRESSURE. A stationary bubble immersed in its own fluid has
an internal pressure Pg due to surface tension.

If the bubble is rising or otherwise moving with a velocity v it also
contains a velocity pressure Py.

b, lov
2 g.

The bubble can be made to rise by immersing it in a fluid in which it will

be buoyed-up by a force equal to the weight of the displaced fluid. The

buoyant pressure Py or weight per unit area on the bottom is the weight

of displaced fluid divided by the projected area.

Internal Bubble Pressure = Bouyant Outside Pressure

This can be written
T = f(D: P, Vv, gc’ g)

By ARDA dimensional analysis

17




BUBBLE PRESSURE

T\ | cpeg? (o 122 b RN bt \4 [ gt \°
ft )~ PTIo sec Ec 1bf sec® & sec®
For:
1bf 1= -d d= -1
lbm 0=b+ d b=-d=1
sec 0=-c -2d - 2e c=-2d - 2e =2 - 2e
ft -l=a -3b+c+d+ e
=a-34+2-2e-~-1+e
=a-2-¢€ a=1+e
1+e, 1, 2 - 2e -1, e
T = C(D) (p) (v) (go) (g
Tg. Dg €
51 = Cl—=
Dpv v
fe=1
2 2
(%) (%)
Dg Tge
(Dpv2 ,
Tge (We) (Weber Number) ‘
€= lz_ " (Fr) ~ (Froude Number) = Bo = (Bond Number)
Dg
IfD=1L
m 2
Li—) Vv
- (L) Y Lg) - [_mg | _ -
C = Teq <;2—> = <TLgC> = Bo = (Bond Number)

-

where Bo = Bond Number, used frequently in correlations by many authors.
Reference to the general bubble mechanics equation shows that this is the

same result obtained in region 4 in the general relation where (Re)? = 1
and (Eu)® = 1,

The preceding would seem to indicate that the pressures in a bubble vary
due to surface tension, velocity and weight with velocity v and diameter

D and that one measure of these is (We/Fr) = Bo. It may be that the Bond
Number Bo may be a measure of bubble stability.

18




BUOYANCY

BUCKINGHAM PI THEOREM. See Pi Theorem.

BUOYANCY NUMBER. This number, which is a natural convection term

occurring in the general convection equation, does not seem to have been
given a name

Buoyancy Number

Bu =
dimensionless
2 12 £6)w 1nf) (B — AT F abs
_L°wBAT _ F abs
- pf Vv - 1bf sec 3 ft
<|J,f -—ftz V ft v sec
2
Bu=LmB\?T [whex‘ew:f—nﬁ
HfEc VV gc
2 1bm It 1
_ L2 pgBAT _ (L ft> <P ft3 ) <g se?) (B Fabs)(ATFabs>
T o(rfgv 1bf sec lbm ft ft
_ He ft? 32.2 Ibf sec? | \| sec

VL \pAT
B g _ (Re)BAT
() FD
Lg

The last equation indicates that BAT is the basic dimensionless number
rather than Bu.

It will also be shown that

Bu = (Re)paT = (Re)(2r)\(&_
Fr Frj\ p /\gc
Buoyancy force per unit volume. If a bubble of volume V and of weight
density (w/V)j; be immersed in a surrounding fluid of weight density
(w/v)g, Archimedes' principle is that a body immersed in a fluid is

buoyed up by a force equal to the weight of the displaced fluid. The net
force is the buoyancy force less the weight force.

19




BUOYANCY

Viaa \V/o \V/j
If the inside fluid now increases AT above the initial temperature and

B(ft’/ft’ F) is the coefficient-of-volume expansion, the increase in
volume per unit volume is (BAT). The additional buoyant force upward

is then
(_F_) - (BAT)(Y—) - wBAT )
v At v o Vo

There is no additional weight force downward because there was no increase
of inside weight resulting from the volume expansion. The total net
buoyancy force is then

F5)- Gl Gl () 6)- (527)

F w w for inside heated AT above different
=)= [{=)a+BAT) - (¥
(V) [<V0>( R <V>1J outside fluid

<F— (=) - (& - for no AT and different fluids
v V/o v,

F\_ (BAT) w\ _ wBAT for AT inside above same outside

V)" v/ VvV fluid

. w m\ g .
In the preceding, v/ \¥ g—, thus the buoyancy force due to weight
c ,
densities is frequently called a gravity force and written in terms of mass
densiti 2 =
es \37) =P or

F m)\ g g
— | = BAT|—+ = (BAT
<V> <V>gc ( )p<gc>
Buoyancy force per unit mass.

7) 2emo(g)

- BATp
<E>= <V - 8c/ - |par(&-)|Lef
m (_rg_) p gc/|1bm

v

20




BUOYANCY

ft

F ft? € sect

=)= [B——t—)(a __sec

<m> < ft3Fabs>< TFabS) Tom £t
Ec Tbf sec?

(g_) _BpAT(g

m P gc

5
P 8c
Buoyancy number by dimensional analysis. It is desired to develop a
Buoyancy Number to express the effect of natural convection resulting

from a body of fluid of volume V using in temperature AT above the
surrounding temperature under the action of a buoyancy force

A
<%> = w%’ T . By basic ARDA procedure

Buoyancy Number

Bu =
dimensionless
F
=f<—\7, L, V, }Lf)
_CwBAlefaLftb ft \°f/ 1bf sec\®
- VAT sec Hf-_f-t‘z—
1bf O=a+d d = -a
‘sec 0= -c+ d c=d= ~a
ft 0=-3a+b+c-24d ‘ b=23a-c+ 2d
= 3a +a - 2a
= 2a

X |
By = C(WBVAT) (L)za(v)-a(uf)-a

(LZWBAT>a
= c——"—==—
pevV

where C and a can both equal 1.
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CAUCHY NUMBER

Examining the buoyancy number

wBAT

v
Bu = [LZWBAT} - L - _ (F) buoyancy AT
Mg vV Mg (F') viscous drag

As was the case with Re these forces are per unit area per unit velocity
per unit distance.

CAPILLARY TUBE. For flow through a capillary tube (Ref. 24, p. 16).

. £t a b{ 1bfsec\C 1bf \d
sec -1 =c¢ c =1
1bf =c+d

=-1+4d d=1
ft 3=a+b-2c+ 2d
=a+b+2 -2 a=3-b

v =cm’ PP e

Vi L\?
575 - C\B

CAUCHY NUMBER. This parameter occurs in elasticity problems
involving modulus of elasticity, E. When it occurs with the shear modulus
S it is known as the Fanning number. '

For solids Youngs modulus of elasticity is used for E. For compressible
fluids Murphy (Ref. 28, p. 145) suggests the bubble modulus of elasticity
(see Modulus of Elasticity).
Ca Units

Cauchy Number

dimensionless

bm)( 2 ft*
pvt P sec?

Eg. ~ 1bf 1bm ft
C ———————
(E ?)(gc 1bf secz>
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CAVITATION

Murphy (Ref. 28, p. 1670) shows

Ca = (Ma)? = 2%

Cauchy Number as a force ratio. The Cauchy Number may be expressed
as a ratio of the force of deceleration or inertia force to a compression
force.

m
—J]a
_ (Force of Deceleration) _ (gc)

Ca = (Force of Compression) EA
v m L
i} m(_t-) - gﬁ)A(T>V Nl
EAgC EAgC Egc

CAVITATION. Increases in fluid velocity are accompanied by reduction
in static pressure. When the velocity in a liquid has increased to a value
such that the local static pressure is reduced to the vapor pressure of the
liquid, the liquid boils to form bubbles on cavities.

Pump cavitation equation. In a pump inlet the allowable pressure reduction
P of a fluid because of velocity may be established.

T

if: P = (P, - Py) = (total inlet pressure) - (vapor pressure)

= (Patm - Psuction)_' (Pvapor)
AP = (P, - P;) = (pressure rise across pump)
N = pump rpm

v = *ND = pump impeller tip velocity, ft per min

a b c d :
1b 1b 1 1bm . 1bm ft
(P ﬁ’) C(AP ??) (N ) (p i ) (D “) (gC 1bfsecz)

1bm O=c+ e e = -cC
sec 0= -b - 2e '

= -b + 2c¢ b = 2c
1bf l=a-e

=a+c a=1-c¢
ft -2=-22a-3c+d+te

= -2+ 2c -3c+d -c

0= -2c +d d = 2c¢
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COMBUSTION

AP = c(P)! T ¢ ()% (1 (D)2 (g)”©

P a |
(__N%E_z> = C(—Eﬁ) = C(Th)a (where C and a are new numbers)

The preceding relation is given by Langhaar (Ref. 2, p. 114) where Th is
the Thomas number. An alternate form given by Pankhurst (Ref. 24,
p. 92) is

Pg. _ Pgc
omiNeD? | pv*

= C(Th)®

Eu = C(Th)?

Pipe line cavitation. Murphy (Ref. 28, p. 144) suggests use of Cpwith P
defined as the vapor pressure for pipe line cavitation analysis.

COMBUSTION DOMAIN. ARDA analysis gives

C = fen(Pr, Sc, Fr, Eu, Hu, Da, Ec, Re, SF)

Derivation of combustion domain. It is desired to develop by ARDA
dimensional analysis a general combustion equation (Ref. 24, p. 110)
to include the physical processes governed by the following physmal
properties and conversion factors:

1. k = thermal conductivity, Btu per hr ft* per F per ft

2. Dy, = mass d1ffus1v1ty of one substance into another, ft? /hr

3. g = gravity, ft per sec’ '

4, P = pressure, lbf per £t

5. q = heat value, Btu per lbm

6. U = reaction rate, lbm per sec per lbm

7. J = 778 ft 1bf per Btu for heat conversion into mechanical energy
8. 3600 = 3600 sec per hr for mixed units of sec and hr

9.

cp = specific heat at constant pressure, Btu per lbm F
10. D = diameter, f{t

11. v = velocity, ft per sec

12. pm = viscosity expressed in mass units, 1bm per ft hr
13. AT = temperature rise or value above given base, F
14. p = (w/V) = mass density, lbm per £t

15. g = conversion factor = 32, 2 lbm f{t per 1bf sec’

16. L = length dimension, ft
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COMBUSTION

The relation between these factors is:
Lo cfe B Vi i ftCP_l_lgid Btu \°f+ 1 \f
T hrftF mpur) \B sec? £12 9 Tom sec
5 ft1bf g 3600 5€C h Btu ’D ot Joge \K 1bm \™
Btu hr P Tom F v Sec Pm fthr

n P q r
1bm Ibm ft
ATF) (p 22 =207 (Lge
( ) (p £t ) (gc 1bfsec2) ( )

Equating exponents:

hr O=-a-b-h-m m=-a-b-h
1bf 0=d+ g-q g=+d + g
Btu O=ate-g+i i=-a-etg
sec 0=-2c-f+h -k -2q
=-2c-f+h-%k-2d-2g k=-2c-2d-f-2g+h
1bm O=-e-i+tm+p+q
T =-etate-g-a-b-h
+tptd+g p=b-d+h
F O0=-a-i+n
=-atate-g+n n=g-e
1t O0=-a+2b+c-2d+g+]j
+k-m-3p+q+r
O=-a+2b+c-2d+ g+ ]
-2c -2d -2g -f+h+a
+b+h-3b+ 34 - 3h
+d+ g+ r
O=c-f-h+j+r r=c+f+h-j

Substituting in original equation

1= C0*(Dem) () (®) (@) (D) (1)8(3600) X(Cp) ™ ™ © F &y

-2c-2d-f-2g+h, . -~a-b-h b-d+h

(v) (Km) (AT)E ™ ©(p)

d+ c+f+h-j
(ga)" " B(L) !
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COMBUSTION

Collecting and identifying terms:

- -al -br C
1= Pm Cp -1 in__ T _I# ]
. k v -’ w P Dm Y - v v
= Pr = Prandtl = Sc = Schmidt = Fr = Froude
Physical Properties i Diffusion Gravity
- - - o -
B pgc . 7 d [ q 7 °r Lt‘I 7 f
evz - \ CpAT __J \ v )
= Eu = Euler = Hv = Heat Value = Da = Damkohler
Pressure Heat Release Chemical Reaction Ratio
- S0 = he 43
v2 V-8 pvL(3600) 7 L 7Y
EPATgCJ ., “ |"'mv J - D ~ e
= Ec = Eckert = Re = Reynolds = SF
Heat to KE Viscosity = Shape Factor
L 4 L 4L

C = (Pr) " 2(5c) P(Fr)¢ () Y mv) ¢ (Da) (Be) "E(Re)P(sF)

Combustion regions. If certain phenomena are not present then the terms
representing the phenomena are absent. For example, if there is diffusion
present, the Schmidt number is absent or

(Sc)_b = (Sc)O =1

Combined terms. For specific cases the terms are combined to give other
less basic numbers. For example the Damkohler II parameter equals
[ (Da)(Re)(Sc)]. The Lewis number equals (Pr)/(Sc), etc.

Combustion domain by associative method. Knowing the physical properties
that are to be included the appropriate dimensionless numbers including
these properties are included to permit the immediate writing of the
equations as shown by the tabulation.
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CONVECTION

Corresponding
Property Dimensionless Number

1 k Prandtl

2 Dm Schmidt

3 g Froude

4 P Euler

5 q Heat Value

6 U Damkohler

7 J Eckert

8 3600 Included in other numbers
9 p Included in other numbers
10 D ' Included in other numbei's
11 v Included in other numbers
12 Fm Reynolds
13 AT {Included in Eckert)
14 P (Included in other numbers)
15 gc ~ (Included in other numbers)

- 16 L Shape Factor

CONSTANT. A pure constant is a dimensionless number, such is the 718

ft 1b

in the d1mens1onal constant or convers1on factor J = 778 —— B
u

CONVECTION HEAT TRANSFER. ARDA analysis gives

Nu = fen (Re, Pr, Bu, %)

Derivation of convection heat transfer domain. The general convection
domain equation is established by basic ARDA dimensional analysis. The
convection conductance h, depends on propertles of the fluid and conversion
factors as follows:
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CONVECTION

1. p=(m/V) = mass density, 1bm /ft?
cp = specific heat per unit mass, Btu/lbmF

3. wBAT/V = buoyant force per unit volume, 1bf/ft>. Determination of
this buoyant force is based on the principle that a volume immersed
in a fluid is buoyed up by a force equal to the weight of the displaced
fluid. The volume increase per unit volume of a part of the fluid,
resulting from a temperature rise AT °F is B(AT) where B is the
coefficient of thermal volume expansion, f3/ft> F = 1/F. If the weight
density (w/V) is multiplied by B(AT), the weight of the fluid displaced
by this increase in volume is obtained, which is the buoyant force per
unit volume.

L = size factor, length in ft

D = tube diameter, ft

v = fluid velocity produced by forced flow rather than buoyance, ft/sec
uf = viscosity in force units, 1bf sec /£t

k = thermal conductivity, Btu/hr ft F

O o 3 o U

gc = mass acceleration constant = 32.2 lbm ft/1bf sec’. Introduced
because flow may be expected in which lbm masses may be expected
to be accelerated by 1bf forces which will then require the g, relation
between lbm and 1bf in the F = ma/g. law. That is to say, because
the F = ma/g; law is involved in the flow phenomena, it is introduced
by use of the g, conversion factor.

10. (3600 sec/hr) = time conversion factor, introduced because some
properties are based on seconds, others on hours.

General convection equation. The relationship between h. and these factors
may be written using usual units, if C is a dimensionless numerical
constant and a, b, ¢, etc. are exponents, as

- d
, Bt \_(mlbm *(, _Btu ® (wBaT e\ ft> (D a)
ChritF/) \V {3 P1bmF v £t
(V £t >f< 1bf sec)g (k Btu )h< 1bm £t \
sec) M ¢ neftF ) \BC 1bf sec?
3600 225 :
hr
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CONVECTION

L

a b c
Nu = C(Re) (Pr) (Bu) (—- Convection Equation

d General
D)

Domain

Region 1 with high velocity. For the convection domain three general
heat transfer regions may be recognized. Region 1 may be designated
as one with high velocity. This high velocity occurs with forced flow
and would be turbulent flow with buoyancy effects negligible. For

.. wBAT\C | . .
buoyancy effects to be negligible 7 in the basic equation must
A C
equal WBV T =1 or ¢ = 0. Then in the general convection domain

equation (Bu) = (Bu)O = 1 to yield the usual turbulent flow Nusselt
relations.

a b L d
Nu = C [{Re) (Pr) (_ﬁ)

L d d L\°
For long tubes the effect of (f)-) is negligible or (—-—) = (——) =1 or
d=0.

Nu = C[ (Re)*(P1)]

This is the usual convection equation for turbulent flow (Ref. 20)
(Ref. 21, p. 618).

Region 2 with low velocity. This occurs with forced flow. If the

velocity is low enough for laminar flow, then viscosity effects as well

as buoyancy effects must be negligible. In the basic h%at transfer domain
equation: for viscosity effects to be negligible pfg =pg =1 or g=0; for

wBAT )C _ (wBAT

T\ Vv
the derivation of the general convection domain equation g =b - a - c.
Thus, 0 =b -a - 0 and b = a. The general convection domain equation
with b = a and (Bu)€ = (Bu)® = 1 becomes

o
buoyancy effects to be negligible( ) =lorc=0. In

(Nu)

d
C[(Re)(PrHa(%)

a d+a
| DL
C [Z(Re)(Pr) L] (D)
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CONVECTION

The individual unit properties and exponents on each side of the equation
must be equal. For example, for lbm

1bm® = 1bm® " P11

Writing the equality for the exponents for each one of the unit properties
such as lbm, 1bf, etc. in turn

1bm O=a-b+i i=b-a
1bf O=ctg-i=ct+tg-b+ta g=b-a-c
F -1=-b-nh
Btu =b+ h h=1-b
hr  -l=-h-j

-l=-1+b-j . j=b
sec O0=-f+ g - 21+ j

=-f+b-a-c-2bt+2a+hb f=a-c
ft -2=-3a -3c+d+te+tf-2g-h+i

-3a~3c+d+eta-c-2b+2at+2c-1+b+b-a
-a -2c+d+e-1 e=a-1+2c-d

Substituting these values of i, g, h, j, f and e in the original equation
. _Cmac bWBAtchDa-1+2c—d( a—c( )b—a—c
c T \V P v M at
1-b b-a b
(k) (gc) (3600)

Rearranging:
a b C d
Dv —
(hc D\ _ (277 ) |en(2600)ks ec (DZWBAT) (_Ii)
k M Ee k HevV D

Checking units in each of the groups in the preceding equation shows the
important fact that each group is dimensionless in that the units of the
numerator cancel the units of the denominator. Such groups occur
frequently in heat transfer and fluid flow and are called dimensionless
numbers. Most of these dimensionless numbers have been given names
except the fourth which will be defined as the buoyancy number Bu. Thus
the previous equation may be written:
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CONVECTION

d+a
L
If the effect of the B) term is negligible, as for example with long

d+a L\°
tubes, (B) = (B) = 1. The preceding equation becomes the usual

laminar flow relation.

LZ Mf 8¢ k

Dv ) {3600 D
ol \'A Cp Hf BclL

I
Q)]
"
——
]
O
™
w
o~
o
(o]
2y
<8
S
—
=] 0
e
S—
[ |
»

hr

I
Q
0]

=

This is a well known convection equation for laminar flow (Kef. 20,
Ref. 21, p. 621) where m = mass flow rate, lbm/hr and Gz = Graetz
number, dimensionless (Ref. 22, p. 228).

Region 3 natural convection. If natural convection is assumed as not
applicable to tubes of diameter D having a forced velocity v, then the
terms involving D and v in the initial derivation of the general convection
equation must have negligible effect or D€ = 1 = D° so that e = 0 and
vi=1=10 50 that f = 0. Experiment seems to show that b = a.

Substituting these values of e, f and b in equations for the exponents
in the derivation of the general convection equation

f=a-c v e=a-1+4+2c-4d
0O=a-c v0’=a-l+2a—d
Cc=a d=3a -1

Substituting these values of b, ¢ and d in the general convection equation
domain:
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CONVECTION

a a a 3a -1

Dv =2
vy ) [D*wBAT ( ) (L)
= Pr —_
Bf 8c bf vV D
m
Lv 5 \[L2wBAT
= C (Pr)
Mf Ec pevyv
- a
m
C v wBAT (Pr) where L=V
I‘Lf gc |J'f
L

L (@) frec) e

C- density buoyancy (Pr) 2
Lviscosity viscosity

a

L

13 (%f’—) mg BAT

(Px)

z 2
be 8c Y

] pe gl vV

L} (-r\?) gBAT

Pr) where wg. = mg

2 a

2
L Bf B¢

— (P=)

cl(Gr)(Pr)]® (Ref. 20, p. 1714(Ref. 21, p. 624),

(Ref. 22, p. 373)

2 a

3 f{m
L (V) gBAT ¢ 3600pfgc

C

1.3 (%)2 (3600) gBATc

L Hfz gcz k

a

P

i

C(Ra)?

kpfge
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CONVECTION

where:

dimensionless numbers are in terms of L. rather than D
Gr = Grashof number, dimensionless (22, p. 228)

Ra = Rayleigh number, dimensionless

(Gr)(Pr) = (Re)(Bu)(Pr) (22, p. 373)

| The equation Nu = C| (Gr)(Pr)]a is the usual natural convection equation,
| The form Nu = C(Ra)? is less well known (22).

Summary. Results in the three regions may be summarized in the table.

Convection heat transfer by associative method. This is alternate to the

ARDA basic method, using applicable dimensionless numbers from
Table 2.

A
If h=fcn[D, Vi pr o ky oy, ¥BAT gr 3600 secj\

PV hr
- feon I—(..); (e, ~ \{@-A_T.V.Ii\ [A1co v. 0. o . %00\-‘
' AT -t ']
Convection Viscosity Heat Heat Shape umbc?rs
Conductance Transfer Including
= fcn Related . Buoyancyll Factor
Related Number Properties Number |\ Numberd\V’ P’ Ec
Number s Number umbe sambe 3600
L
Nu = fcn[(Re)(Pr)(Bu)(b-) (Re)]
a b L h
Nu = ¢ [(Re) (Pr)°(Bw)¥(Z) }

The limitations of either method in general use are not at present

determined. It appears that use of both methods will be of value in the
solution of particular problems.

CONVERSION. Conversion from given units to other units is accomplished
by the use of conversion relationships.

Conversion equation. A conversion equation is fundamental. It is arbi-
trarily adopted and requires no proof, 1 ft = 12 in,

The constant 12 may be considered to be a proportionality factor. It
is a number and is completely dimensionless.
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CONVECTION

General Convection Domain Equation
Region Properties Nu = Nusselt) = h.D
and Number k
- d
Type of a P b c (_I:_
Convection C(Re) (Pr) (Bu) D
= :g c Reynolds\ @ Prandtl\P Buoyancy \© [ Shape d
_g ‘S Number Number Number Factor
=
g g |- cfbvel? cp(3600)psgc b ptwBaT) L\
“ Bf gc k mevV D
1. D a b o L\°
Forced (Hf) (Bu)| = C(Re) (Pr) (Bu) D
Turbulent L a b _ a . _
Re Above (vp) (D> C(Re) (Pr)? = C(Pe)® ifb=a2a
10
2100 C\:( ) vp)} if (Pr)
Pe = Peclet Number i Ec
\:(dlameter)(mass )j\
C Z
viscosity/\sec ft
d+a
2. . D fe) L
Forced " (Bu) C\i (Re)( Pr)(L):\ (Bu) (D>
Laminar E_P_ Bt L\d+a o
Re Below kL C(Gz)?® if (B) = (B) =1
2100
.. [cp\l?
Gz = Graetz Number C |(m) T
c [mass ( specific heat ﬂ
hr conductivity ft
3a -1
3. P a L
X B =
Notural = | D |=ClRe (Pr) (Bu)] (D)
Convection (gBAT) Vo= cl(Gr)( Pr)] = C[Ra]®
i cl(cr)1? (Pr) = Alternate Form
Gr = Grashof Number p WBAT _ L)
Ra = Raleigh Number C{ Bf Ec )i\ Nu = fen (St’ Bu, D
St = Staunton Number a
of (ezeity (btmvan.cv)} st = ten (B0 &)
v1scos:1ty viscosity D
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CONVECTION

TABLE 2. SOME BASIC DIMENSIONLESS NUMBERS
Case Process Law Association of Dimensions in a
No. or Dimensionless Number
Proof :
Dimensionless Symbol Name
Number
1 Mass Under F o= ma [ ma Ne Newton Law in
Acceleration T oge g F Dimensionless
Form
2 Mass Flow Dimensional DG) | Dvp Re Reynolds
Influenced by Analysis v /| Rfge
Viscosity
3 Surface Heat Flow Dimensional _k_x_Il) Nu Nusselt
Analysis k
A Ruovancy Force Natnral M2wRATI Bu Natural
on Hot Mass in Convection pfVV J Convection
Gravity Field Number
5 Length to Diameter Dimensional L L Shape Factor
Ratio Shape Factor Analysis D D
6 Equivalent For Circle 4A Equivalent
Diameter 4A DP Diameter
— =D
P
7 Transient Heat Dimensional kt Fo Fourier
Conduction Analysis Cp pL?
8 Heat Transfer Dimensional Cp(3600)}*f gc) Pr Prandtl
Physical Analysis k
Properties
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CONV ERSION

A conversion equation contains no unknowns. It is universally valid.
The terms have both numerical and units values. The numerical
values on both sides are different. The units values on both sides
are different.

The previous conversion equation may also be written as a conversion
factor in the form

Conversion factors. Conversion from given units to other units is
best done by the use of conversion equations expressed as conversion
factors. Some selected conversion equations adopted by the U. S.

Bureau of Standards with corresponding conversion factors to slide rule
accuracy are:

1 in., = 0.0254 m (Ref. 33, p. 9)
m .
1= (0. 0254 ;IT) [ conversion factor]
1 1bf = 4.4482216152605 Newton (Ref. 33, p. 9)
1= (4.45 E—) [ conversion factor]
"7 1bf
1 kgf = 9. 80665 Newton (Ref. 33, p. 9)
1= (9.81 -E) [ conversion factor]
kgf
1 1bm = 0.45359237 kgm (Ref. 33, p. 9)
1= (O 454 _kirp_) [ conversion factor]
: lbm
1{t=0.3048m (Ref. 33, p. 8)
m .
1=0.3048 [ conversion factor]




CONV ERSION

A conversion factor is so called because it is a multiplying term used
to convert from given units to other units.

Conversion example. As an example of conversion, it is required to
convert 1.00 psi to N per sq m. Conversion factors are used as
required so that the units cancel to give the desired answer.

P =1.00 psi
1bf N
o (1.00 ;;—E) (4.45 -1_1;)

4
(0. 0254 - 2)
in.

= 6895 —N—Z
m

The conversion equation for pressure is thus

Th . N
1 KZ= bﬁVb—n—lz

The corresponding conversion factor is thus

N N
m> m?
1=1{6895— |} = 16895 —

) ps1

inJ?
(=)
Py

More accurately 1 ={[6894,7572 = (Ref. 33, p. 17)

psi

Conversion factors go. Most conversion equations and conversion
factors as previously given are between the units of the same kind
of property or dimension. Thus

12 in. =1 ft

Another type of conversion factor occurs in conversion between different
kinds of properties. These conversion factors may have definite symbols

such as g, which is essentially a conversion factor with numerical and
units part for converting 1bf to 1bm., '
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CONVERSION

lbm f{t
= (32,2 —— =1
gc ( 1bf sec2>

This conversion factor was obtained dimensionally from the F = (—g—:m—>a
c
equation. Its numerical value was established so as to have 1 lbm weigh

1 1bf under standard gravity acceleration g = 32.2 ft/sec?.

The g. factor operates like any other conversion factor. For example
to express pf viscosity in py, mass units.

g = 100 1bf iec
ft
1bf sec 1bm ft sec
= {1.00 —=—=}{32,.2 ————=} {3600 >
Fm ( 8 )( 1bfsec2> ( hr
1bm
= 116,000Thr-

The g. conversion factor must not be confused with the mathematical
expression of a physical law such as

where the terms F, m, a represent terms having numerical value and
units, the numerical part varying with the problem.

In many systems g, has been assigned a numerical value of one.
Important g, conversion factors are

vl = gc (Ref. 32, p. xvi)

(32. 1740 —Pmft )

1bf sec

1

slug mass {t
1 = gc = g )

1bf sec®

Ibm ft

1
( poundal force secz>

1

1::gC

—
1

aQ

0
n

980, 665 -S> Mass sz) (Ref. 32, p. xvi)

gram force sec
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CONV ERSION

1 = g = 980, 665 SBMMASS cm.
‘kgforce sec
kgmass m
l=gc= (1 Newton force sec?‘) (Ref. 33, p. 3)
1=g = ] grammass crr;
€ dyneforce sec

Conversion factors J. Another group of conversion factors applies, usually
relating energy as work to energy as heat.

£t 1bf

=3 =778 2

1=7= (1 New%‘;’:ﬂ‘:eter) (Ref. 33, p. 3)
1=7= 1.3558179ii’—‘1‘%§ (Ref. 33, p. 14)

Energy conversion.

1= (1.05504 Jgﬁf) (Ref. 33, p. 7)
1= (4.1868 3‘;‘;116) (Ref. 33, p. 7)

-
I

= {1 joule
watt sec
1 joule
amp volt sec

Conversion factors, general., Important unity conversion factors are
given for reference. These permit easy conversion from given units to
other units as may be desired. Lbm denotes lb mass, 1bf denotes lbforce.

—
]
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Length

Conversion:

Weight

Conversion:

Time
Conversion:

Temperature

Area
Conversion:

Volume’
Conversion:

i
1!

f—t
1]

—
!

mi

1e

meter)

—
1

CONVERSION

(1 b micron

met

(60

er

e

1=

1=

1=

(o2

lzi_n_._ ] = 1000mlls 1= 39, 37in.
ft in. m
2.54 gﬂ) 1= (10——mm) = (1ol°i)
in. cm m
10 mm 1= (100 angstrom .
cm meter
103 =2
meter
10 micron
meter = (25, 400 micron
ft 12 i - in.
meter ft

gram

1b
205 o

3600 g

day

T°R=T°F abs =t°C + 460

[
n

s
1]

in.

(144 -

3
(231 in.
gal

)

)

=(4

40

gal

5)

quart

(i)
(>
N

sec

)

)
)

= em
= (1000 kg)

gm
(453 5 )

T°K=T°C+ 273

1= (32 oz )
quart
] = (1.057 hter)
quart
o)




Veloc itz

Conversion:

Energy

Conversion:

Mass

Conversion:

Force

Conversion:

Pressure

Conversion:

CONVERSION

—
i}

( (mile))
hr
1.151 _kn_ot—
186, 330 Rile
1 = sec
vel of light

J = (778 it lbf) = (107. 6 l‘ﬂn)
Btu Btu

2.99793 x 1010 &2
1 = secC
vel of light

—
1]

1 = (33, 000 St 1Bf ) 1= (746 Watts)
min hp hp
Btu
= {2
1 ( 545 hp hr)

- Btu joule 3 dyne cm
l—(3413 ) (3600000k h) (360}(101 v hr)

107 dyne cm = [ 36 watt ) _ 1 =(4.184 joule
joule joule ) cal

oot
]

cal joule
(252 ) (1060 Btu)

1= (32. 2 )
slug mass

1 = (32 > poundal force)
- 1bf

_ dyne force \ _ 2.25 1bf _ Newton
1= (981 gram force) - ( 1, 000, 000 dyne force ) —(4° 45 1bf )

(atm refers to standard atmospheric pressure at sea level)

(14. 7 p‘“) 1= (34. oﬁ—“ﬁtﬁi)
atm atm

—
]

—
il

- atm

. - 1,013,250 1YRe
(29.9—%—5) 1 (760%5) 1 = cm
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DAMKOHLER NUMBER

D?
Circle: Area = mR® = 14—-

Perimeter = 2R = D

Sphere: Surface = 47R? = nD*
4 .3 _1 .3
= — = — 1D
Volume 3 TR g "
Cylinder: Surface = wDL + 2 wR?
Volume = tR*L

Metric conversion. See metric system.

DAMKOHLER NUMBERS. A quantity involving chemical reaction rate.

Basic Damkohler Number. It is assumed that U is a driving potential per
unit velocity per unit distance for chemical reaction in the same manner

that viscosity, pf, is a driving force (equal to drag force) per unit velocity
per unit distance for flow,

Thus, for driving potential

Fluid Flow Chemical Reaction
(lbf force) 5 (1bm)
e ftz area secC
ft ) 1bm
—— velocity
A ft locit
ft distance Vsec ¢ y
L ft distance

U LU

The chemical driving force is therefore =

which inspection shows

L

to be dimensionless. This is the Damkohler parameter 1 which we will call
the Damkohler parameter.

Damkohler Number
Dal = Da

dimensionless

. 1bm
LU _ (L ft) (U Ibm sec)

v ( ft )
v —
sec
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DAMKOHLER NUMBER

Damkohler Number. There are five dimensionless groups (6). The first

Dal expresses a basic chemical driving potential and will be termed the
Damkohler number. The other groups are redundant in that they are
expressible in terms of more basic groups.

s 1bm
. L{tU———
Dal = Da = (LU) - Ibm sec
v ft
sec
Da2 = (Da)(Re)(Sc)
2 & 1lbm
LU\ (Lvp\( tm \ _ (220  [Z " Y Tom sec
v J\km /\pDm/) "\ D /~ b £t
secC

Da3 = (Da)(Hv)

H

Da4 = (Re)(Pr)(Da3)(3600) = (Re)(Pr)(Da)(Hv)(3600)
- ()= () e o)
A% cpT
= (pL Uq) (3600)
(o) (e (o gms (o2 (as00sss)
) (k E%%‘i——im) (T Fabs)
Da5 = Re
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DIFFUSIVITY.

The three principal diffusivities are listed below.

DIFFUSIVITY

All

have the reduced units (ft*/hr), but in this form the physical nature of

the property is not indicated.
required to indicate the physical nature of the quantity.
diffusivity and viscosity are separately discussed elsewhere.

diffusivity is discussed in a following section.

DIFFUSIVITY

Equivalent or unreduced units are

Thermal
Mass

Thermal Diffusivity

Momentum Diffusivity
(Kinematic Viscosity)

Mass Diffusivity
(Molecular Diffusivity)

hr
(k Btu {t )
hr ft2 F

Btu

_( k>_

“lpc - 1bm

P 1bm _Btu_
(p ft3)<°p Tom F

)

o
hr

HFm
p
1bm
Fm ft hr

1bm
ft?

we g 3600\
(e )

1bf sec
Kt —fZ
(32. 2

secC
(3600 "ﬁ?)

0 1bm
ft?

P

1bm ft
1bf sec?

ft2
(Pr)is
( 1bm

T diffusion)

=D

m 1bm .
(_Er den51ty)
(ft thickness)

1bm
(hr ftz>
m. ( 1bm
1)

lbm ft° ft
™M Zr ft2 1bm
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DIFFUSIVITY

Mass diffusivity.

Mass diffusivity D is a property similar to thermal
conductivity k and viscosity uf as shown in the table of basic definitions
or as used in a flux equation in the second tabulation.

SIMILAR PROPERTIES k, u¢, D

K 51 Dm
Thermal Conductivity (Absolute) Viscosity (Mass) Diffusivity
Btu 1bf force lbm . )
(hr heat rate) ) (F *——area) e diffusion
(ft* area) f7%¢ ) ft* area
—_— D
( ft thickness—j sec velocity m /lbm densit\
F temp. diff. ft thickness £t3 Y
L J \ \ft thickness/
Btu
hr
kT - Hf
ft
_ Btu ft - 1bf ft sec
T hrig F S AT _ lbm ft? ft
T UM hr f£2 1bm
-k Btu - 1bf sec
TS hRritF R _p
m py
1bm ft
Hm = Mf B¢ (3600) ft2 hr oD = 1bm ft°
m = 3 hr
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DIFFUSIVITY

DEFINING FLUX EQUATION (REF. 31, p. 6-6)
Property Property Property
k Ky D
Fourier Law Newton Law Fick Law
ma. _ Fgc
A T A
F
mv _\A {1]
At - (v BT
L
Heat Flux Momentum Flux Mass Flux
. Btu <rh lbm)( iE) . lbm
R hr )\’ hr ™y
A ft? A ft? A ft2
4\ Btu or (rhv\ 1bm ft ﬁl) lbm
°*\A/i® nr A Jhr ft2 hr °T \A /T hr
(k Btu ft \(dT F o (22 1bm 4y 1bm
hr {2 ¥/ \dL ft A )t hr? _ 1bm (D ft2)< " Tom
=T \P e hr)\ dL £t
<dT Btu ft ‘
= -k|l==) —= dv —
dL/ hr {t _ 1bm hr>
Pm Tt hr ) \dL ft _ D(dr ) 1bm
_ _p%&)(g) L YO0 RO
- pc/\dL _ _c_il 1bm
= "Mm\3T )Tt he? [ ceaction P
r = eactl
= -pca (g%) . Tom
v
= —}.!.f gC 3600(&3)
1bm
ft hr?

|
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DIMENSIONAL ANALYSIS

DIMENSIONAL ANALYSIS. Dimensional analysis is an important tool

in the formulation of complex physical laws. Dimensional analysis
consists of:

1. Deciding the dimensions present in a given process
2. Establishing the relationships between these dimensions
when expressing a physical law in mathematical terms.

General. To consider certain simple processes, the laws expressing
them when written as mathematical unit-consistent or unit-homogeneous
equations indicate association of dimension in certain ways.

It has been customary in dimensional analysis to use letter symbols to
represent generalized total dimensions such as L for length, F for
force, etc. While this eliminates the immediate necessity for adoption
of a unit-dimension system, as far as the dimensional analysis is
concerned, any actual calculations must be made in a system. Actually
it is simpler to adopt such a system from the beginning and thus
eliminate use of the intermediate generalized dimension system.

For example, consider that LL represents L ft where the L. used with

ft represents a number and L used alone represents both a number

and a unit dimension of feet. In this book the so-called engineering
system of units is used.

Thus ARDA dimensional analysis is an extension of usual procedures
to use engineering dimensional units rather than general properties
to simplify and to promote better understanding and correlation.

This arrangement of relationships in dimensional analysis puts more
emphasis on the nature of properties and less on the mathematical
equivalent of a property. That is 1bf is a force and is so used whereas
1bf defined as MLt is rather mathematical than physical, particularly
if no acceleration force is involved in the process.

The ARDA principle of Arrangement of Relations in Dimensional
Analysis is based on the premise that every equation must be dimen-
sionally consistent. The units and exponents on the left-hand side
must equal the units and exponents on the right-hand side of the
equations. This principle is applicable to the equation as a whole and
is also applicable to each one of the unit-properties.

Considerable attention must be paid to the nature of basic dimensions,
definitions and quantities. These are discussed in detail under their
individual alphabetical headings.

The general procedures of dimensional analysis are best illustrated
by specific examples such as the drag domain, etc. given elsewhere,.
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DIMENSIONAL ANALYSIS
Dimensions to powers. It may be shown (28, p. 21) that any measurable
phenomenon may be evaluated in terms of the causative factors or

properties in the form of an equation involving the properties to exponents
or powers.

Thus, if A

]

f{(BCD ....)

beepd L)

then A = C(B°C®D

where first C is a constant and A, B, C, etc. are properties such asp, k,
p, etc. and a, b, c, etc. are exponents.

For example, for a freely falling body

if L =1f(w, t, g)
C

then L ft = C(w 1bf)>(t sec)” <g sfetc2>
1bf 0=a a=0
ﬁ l1=c¢ c =1
t 0=Db - 2c

=b - 2 b =2
Thus L = C(w)° (t)* (g)'

L 2

Cgt

Dimensionless number equation. (1) Any dimensionally consistent
equation (having units on left-hand side equal to units on right-hand
side, perhaps after cancellation) can form a dimensionless number.

A™ = cB™
forms
BM
1 = C|{—— ) which is dimensionless.
AD
(2) Also if

A= cB cPpiET ...

this may be rearranged into the form

b

N=C(N® N» N3 .u)

where N represents some dimensionless number combination to some

power of A B" CP such as (Bn/Am) etc. This is true because the final

equation, composed of individual dimensionless numbers, must be
dimensionless or unit-consistent as a whole.
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DIMENSIONAL ANALYSIS

Physical equations involving powers. Certain other principles, useful
in dimensional analysis, are applicable to the type of equation.

A

i(B, C, D....)

c(B”"cPpi....)
N = C(NlaNZbN3C -"o)

f(NlNzNgo-no)

1l

(1) If any term B, C, etc. has the same dimensions, their ratio
may be written directly as a dimensionless number N; = (B/C).

(2) Any dimensionless number term Nla, etc. where a is unknown
may be replaced byany plus or minus power of the N; term.

a -d
Example N3~ may be replaced by Ny .
T rNIinT a nT b C e g .
v= Ciinp I M ocam boowrittcn inmoony of the farme

d

N = e NP NG L)
1= NN, L)
1= e NN L)

This is because the exponents a, b, ¢ are unknown and any symbol may
be used to represent them.

(3) Any dimensionless number may be multiplied by any numerical
constant because the C term preceding the expression represents any
unknown numerical constant.

Example

N b

a C
C(N;" N, Nj vu.u)

C(CN,})(CN,P)CNS) . . ..

where C represents any unknown numerical value (each value is
different).

(4) Two or more dimensionless numbers may be combined to
form a new dimensionless number.

Example

(N; N;) = Nj.
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DIMENSIONAL ANALYSIS

DIMENSIONAL ANALYSIS ARDA, The fundamental theorems governing
the Arrangement of Relationships in Dimensional Analysis can be formu-
lated as follows. As such they are appreciably more informative than the
Pi theorem commonly used in dimensional analysis.

ARDA theorem I. Every equation should be unit-consistent in that the
units on the left hand side should equal the units on the right hand side.

o f
Example: (w 1bm) = (p 1br3n> (v At )(A ftz)
sec ft sec
' m lbm ft
le: =
Example F 1bf Torm i a sec2>
Bc 1bf sec”

The second equation indicates that where constants such as gcl'are
involved they have both a numerical and a units part.

ARDA theorem II. In the presentation of a physical law

if X =fcn (ABCD .... MNPQ ....)
then X =CA2BPcepd, ... M™N"PPQY

Mathematical proofs of this appear somewhat formidable (28, p. 21)
and will not be given here.

ARDA theorem III. This is an extension of the Pi theorem in a more
useful form.

¥ X =ca2BPcepd ..., MPNPPPQY.... represents a valid physical
relationship, then dimensional number products can be found.

XN _ AM)a( B )b< CP C(DM)d

MQ ™ T\PQ/ \MN/ \MNQ/ \NP
in which the properties A, B, C, D each appear in only one of the
dimensionless parameters such as (AM/PQ) combined in various
manners with other terms such as MNPQ appearing in dimensionless

parameter more than once. The exponents mnpq of properties that

appear more than once in dimensionless parameters will not appear
in the final equation.

It should be noted that if the original expression does not contain the
proper terms, sufficient terms, or contains too many terms, the relation-
ship is not valid and it will not be possible to form the second equation.

A proper estimate of the properties involved in the original expression
is vital. '
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DIMENSIONAL ANALYSIS

Example for the drag domain k
it (%) = 0@ w0 ) g0 5"

then application of theorem Il with regard to units will yield by ARDA
procedure

pAV? T gc Dg/ \rsg./ \D

A d
(Eu) =C(We)'a(Fr)‘b(Re>‘C<%>

ARDA theorem IV. Each basic dimensionless number defines the
effect of a physical property.

Example for the drag domain

if (%) = C(T)2(g) P S(LY ) ¢(DY (g, ) B(p) D

Fgc pvi D\ P -b pvD \"¢(L d
then 5] = C . (—
pPAV Tgc Dg Mf Ec D

4
(Eu) = C(we)'a(Fr)"b(Re)‘C(%)

Comparing the final equation with the original equation evidently

Eu involves the effect of force F
We involves the effect of gravity g
Re involves the effect of viscosity py

(-I]g-) involves the effect of length L,
Thus, each basic dimensionless number appears to be related to a
specific physical property or dimension.

This is not complete, in that the remaining physical properties such
as v D gc P are involved in two or more dimensionless numbers;
~ but if they are so involved, it may be assumed that their effect is
included in the final formulation.
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DIMENSIONAL ANALYSIS

Other ARDA principles. Consider that all dimensions may be present
if they are involved in the physical process.

In particular, for flow of any kind, if 1bf and 1bm are present because of the

operation of the F = (M/g.)a law it is necessary to introduce g. as one of
the dimensional analysis terms. If there is no mass accelerated in the
process the gc term is not needed.

If work energy is convertible into heat energy the J = 778 (ft 1bf /Btu) is
introduced. If this energy conversion is not present, this J term is
not needed.

If two units of the same property are involved, a conversion factor such
as 3600 (sec/hr) may be needed. This conversion factor is needed when
some terms such as k (Btuft/hr f# F) are in hour units and other terms
such as v (ft/sec) are in second units.

Redundant dimensionless numbers. Dimensionless numbers obtained in
the preceding manner are termed basic. An equation containing a basic
dimensionless number more than once such as the following is redundant
in that it can be reduced to a simpler form in which each basic dimension-
less number enters only once.

Example: Nu = C(Re)a(Gr)b(Pr)_C

appears to be redundant because Ra = (Re)(Nc¢)(Pr) to give

b -C

Nu = C(Re)*(Re)P(Nec) P (Pr)P(Pr)

which could be better expressed in the form

Nu = C(Re)® T P(Ne)P(Pr)P - ¢
Redesignation of exponents. Dimensional analysis does not usually reveal
the numerical value of C, a, b, ¢ etc. As such, these symbols represent

values to be empirically determined. They can be positive or negative and
they can be redesignated.

Example: X = C(A)ELJr b(B)b(C)b - ¢
can be rewritten to the general form

X

1

ca2ByPic)c....

or

Y
n

cay* 3¢ xf. ...

52




DIMENSIONAIL RELATIONSHIPS

which can be represented
C=fcn(A, B, C, X...)
DIMENSIONAL RELATIONSHIPS. Properties or dimensions may be

related to each other by equations expressing physical laws. One of
the most important of these is the Newton Law.

F = Cma
F:—rrl—a
8c

. . . 1 .
where ¢ is a dimensional constant = — as defined elsewhere.
Ec

In a process in which a force F gives an acceleration a to a mass m
it is clearly possible to use this mathematical relation to express
force in terms of mass and acceleration, and certain amounts of one
correspond to certain amounts of others, but whenever force itself is
opvcifically concidorcd it ic o favwca fnmeh) and not a2 mass famount of
matter). Viewed in another way, in a process in which mass and
acceleration are not present, force is always a force and not a mass,
or acceleration and mass and force should not enter the problem in
any way.

A similar argument holds for the mechanical equivalent of heat J.
H = CFL
, —1t
where C is a dimensional constant = — = ft 1b .
J 778 Bta
u

In a process in which force F acts through a length or distance L a
heat H may be produced. (Under very definite limitations H may be
converted into F times L). Thus it is possible to express heat in
terms of force and length, but when heat itself is specifically
considered it is energy and not a force and distance. Viewed in the
second aspect, in a process in which force is not present, heat is
heat and force should not enter into the problem.
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DIMENSIONAL SYSTEMS

DIMENSIONAL CONSTANT. A dimensional constant has both numerical
value and dimensional units. J = 778 ft 1b/Btu is a dimensional constant.

A dimensionless constant is a numerical value such as 778 in the
preceding dimensional constant.

Most equations have dimensional constants although the units are not
always clearly defined. In the equation F = Kma, K is a dimensional
constant having units such as to make the equation dimensionally consis-
tent (units on left-hand side of equation equal to units on the right-hand
side of the equation).

DIMENSIONAL SYSTEMS. Also see Systems of Units. The adoption
of various fundamental dimensional systems has severely limited
scope of dimensional analysis to a series of somewhat individual
solutions to special problems with inherent confusion and limitation
in comparing the findings of one investigator on one physical problem
with those of a different investigator on a different physical problem.

A more general approach is desirable. Let the principle be adopted
that there is no arbitrarily fixed number of basic dimensions. Basic
dimensions are properties that are entirely different from each other
in their physical natures. Thus force, mass, and heatare different
dimensions and should not be defined in terms of each other in a basic
method of dimensional analysis.

This is in accord with newer thermodynamics texts (6, 7) using what
might be termed an FMLT system of engineering units in which force
1bf is a dimensional property distinct from mass lbm.

A corollary is that a dimension is a basic property different from any
other dimension and, therefore, not physically a combination of other
dimensions, although in any particular process in which the dimen-
sions are all present they may be related by a mathematical forumula.
Thus, if force, mass, time, and length are all present in a given
process, it is proper to conclude that the physical law expressing their
interaction is also present. Thus, if a force producing acceleration of
a mass is present (Newton's Law) it is proper to include the conversion
factor g, = 32.2 lbm ft/1bf sec?,
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DIMENSIONLESS NUMBERS.

The important dimensionless numbers will be tabulated here.
them are discussed in detail under their alphabetical headings.

DIMENSIONLESS NUMBERS

These numbers, resulting from dimen-
sional analysis, are dimensionless in the sense that the units of the
numerator are the same as or cancel with the units of the denominator.

Many of
Exami-

nation of the derivation of the various domain equations indicates that
many of the dimensionless numbers are associated with the presence
These properties are also included in the

of a given physical property.
following list.

Dimensionless Number

Angle ratio =

Bo = Bond = (F—r—) = (—W—)

c:>|e-

=

2
Run = Pmnvanov [ (L WBAT\
\ MHtVvVv
(Re) Ap
Fr)
Ca = Cauch
y = Egc

Cp = Drag Coefficient = 2Eu

Da = Damkohler = (-L:’—U> = Dal

Da2 = Damkohler 2 = (Da)(Re)(Sc)
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Associated Property

Angles, related

Bubbles

A
Buovant force = (WB,, T\)

\ v /

Elasticity modulus = E

Chemical reaction rate = U

Combustion




DIMENSIONLESS NUMBERS

2
v
Ec = Eckert = —— KE to heat =]
<cpAT gc J>
Eml = Electromagnetic 1 = (ppE v%) Magnetic permittivity = €
E
Em2 = Electromagnetic 2 = (Jm ) Electromagnetic field = =
ppHv : H
2
ppH™ 8
Em3 = Electromagnetic 3 = (—PP_VT‘E)
Fluid flow, gravity see gravity
Fluid flow, viscous see viscosity
Fgc Pg. (CD) Force = F
cu = E = = =
Eu uler (PLZVZ) (pv'2 2 Pressure = P
Pdl = Fluid Dynamics 1 = W (BoI(We' __gpd
Y (Fr)(Re)  (Re)*  ~ pT g’
. kt .
Fo = Fourier =( 2) Heat flow time =t
: Cp pL .
o
¥ =F d = | —— 3 -
r roude (gL) Gravity = g

Fr'equency, see speed

2 2¢3
Gr = Grashof = Rel n ) (P LTgBZAT>
(Fr) K" gc
_ _ (= D] _ (2ep
Gz = Graetz = [4 (Re)(Pr) L] = ( kL)
’ ZHZ
Ha = Hartmann = (ﬂ}g__fég)
pv
Hv = Heat Value = 4 ) Heat value = q
cpAT
hi g
Ja = Jacob= N Evaporation enthalpy = hy
c
k = Specific Heat Ratio = (-E’-)
Cv
L w
D’ %, %, 1 etc. : Length, repeated
_ , _(Pr)_(PCpo)
Le = Lewis = (50) - ”
Ma = _V1 V3 . _
a = Mach = kil etc. Velocity, repeated = vy, v, etc.
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Nu = Nusselt = (-}-IP—>
k
3600 cppvD
Pe = Peclet = (Re)(Pr) = —

Pm = Magnetic Prandtl =

DIMENSIONLESS NUMBERS

Heat surface conductance = h

)

(Rm) _ (upvuf gc)
Jm P

Heat flow = (cp ppk)‘

(Re) ~
3600 c
Pr = Prandtl = ( kp e gc)
Ra = Rayleigh = (Gr)(Pr) = (
Re = Reynolds = ( va) = ( va)
Kf Bc Hf Bc
e e
RF = Roughness Factor = DOrT
R0 LV
Rm = Magnetic Reynolds = —RT_-)
™m
M
Sc = Schmidt = (—ln—)
P Dy
. L
Slenderness Ratio = (B)
L
SF = Shape Factor = (-5)
' N, L)Y
Sh = Strouhal = —
_ _ (Nu) h )
St = Stanton = 5 3TRe) 3600 cp, pv

P
- Th = Thoma = Nz

Vi = Vibration Number =

5 .
We = Weber = (pv D)
' Tge
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3600 D p? gBAT cp>
K pf ge

Viscosity pg

Roughness height = e
Electrical conductivity = o
Mass diffusivity = Dy,

= Shape factor

Rotary or cycle speed = Ng

Amplitude of vibration = W

Surface tension = T



DIMENSIONLESS NUMBERS

DIMENSIONLESS NUMBERS AS RATIOS OF FORCES. Many dimensionless

numbers may be derived from force ratios, which gives some conception
of the significance of the dimensionless number. The force of acceleration
is also known as the inertia force.

Re = Reynolds Number, a viscous force parameter

m
—J\a
(Force of Deceleration) _ (g()
(Viscous Drag Force) v
g e A

I

G I 0 ) )
N e

Eu = Euler Number, a pressure force parameter

_ (Force of Pressure) _ PA
~ (Force of Acceleration) ~ (__n:x_)a
gc
PAgc PA gc _ Pge

= L - m Lz - p 2
m(?) (AL)A(?> '

Froude Number, a gravity force parameter

H
H
n

m
(Force of Acceleration) _ (Ec:)a

(Force of Gravity) B (m)
ol 4
gc
v -(1:
) \E) v
g gb. gL

We = Weber Number, a surface tension force parameter

m
(Force of Acceleration) _ ( gC)a

We = (Force of Surface Tension)  TL
v m L
B} m(?) D L(T>"L _evL
TL ge TL gc T Tegc
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DIMENSIONLESS NUMBERS

Ca = Cauchy Number, an elasticity parameter

m
_ (Force of Deceleration) _ (EE) a

(Force of Compression) = EA
v m Ly - |
_ m(ﬂ i} (E> A<T)V _ oV
FEAge EAge Ege

Dimensionless numbers as energy ratios. Any of the preceding

dimensionless numbers viewed as force ratios can be converted to

energy ratios by multiplying numerator and denominator each by L,
since energy = W = FL.

The force to produce acceleration times distance becomes a kinetic
energy.

Dimensionless numbers as stress ratios. Any of the preceding

dimensionleass numbers viewed as force ratios can be converted to

stress ratios by dividing numerator and denominator each by A,
because stress = S = F/A.

DOMAINS. In dimensional analysis the various physical phenomena

may be divided into various domains which are discussed in detail

under the respective headings. Important domains so discussed are:

Bubble Mechanics
Combustion :
Convection Heat Transfer
Drag

Elasticity
Electromagnetic

Flow
Magnetohydrodynamic
Nucleation
Pressurization
Propellor

Pump

Vibration
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DRAG COEFFICIENT

Dimensional analysis examples. ARDA dimensional analysis has been
applied to physical phenomena domains as previously listed and also to
the following topics discussed in more limited scope.

Bubble Pressure

Buoyancy Number

Falling Body

Fluid Drag of Viscous Fluid

Orifice Flow Produced by Gravity and Pressure
Shear Stress in Pipe

DRAG COEFFICIENT. Although not usually so defined, the drag coefficient
Cp is 2 (Eu) when Eu is the Euler Number. It seems advisable to so
consider it.

CD=

(Drag Coefficient)
Dimensionless

Pg
2Eu=(2 C)

pv’

F Drag Force Force 1bf
£t

A% £t

NI’—'

] - [K1net1c Energy ft lbf]

[Drag Force

- A -

" [Inertial Force
I

_ (Drag Force)
" (Inertia Force)

DRAG DOMAIN, ARDA analysis gives

= f(We, Fr, Re, L)
D
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DRAG DOMAIN

Summary. Dimensional analysis is used to obtain the general fluid-drag
relation

( Euler ) _ C( Weber )-a Froude) —b(Reynolds>_C L d
Number/ ~ Number Number Number D
or

: d

Eu = C(We)-a(Fr)-b(Re)-c(%>
This equation is applicable for regions or regimes extending from those
of very low Reynolds numbers in which Stokes' law is valid, to regions
having large Reynolds numbers. The drag of ships is also included as
a region. These regions emerge or recede as certain properties
become dominant or decrease in importance. This general equation
permits study of the inter-relationship of regions and permits an
overall correlation which should enable better understanding of funda-
mental principles governing flow drag phenomena.

General drag equation. The general equation for the drag on bodies

immersed in fluids is dependent on properties of the fluid and conversion
factors as follows:

1. F =drag force, 1bf, always associated with an areca
2. A =area, ft°
3. T = surface tension, lbf/ft

4, g = gravity or acceleration field, ft/sec?

5. pg = viscosity, 1bf sec/ft®

6. L = length, f{t

7. v = velocity, ft/sec

8. D = diameter, f{t

9. 8. = acceleration constant, 32.2 lbm ft/lbf sec®. Introduced
because in turbulent flow 1lbm masses are accelerated by 1bf

forces, i.e., the F = (m/g.)a law is involved in flow
phenomena.
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10. p = A(m/V) = difference in mass density between inside
and outside fluids or between a solid and a fluid or of a
fluid alone if only one fluid is present, lbm /ft?.

The relationship between F and these factors may be written in usual

units with C as a dimensionless numerical constant and a, b, ¢, etc.
as exponents, as

a b c e
F 1bf 1bf ft 1bf sec d ft f
(K ftz) =C (T ft ) (g secz) (pf £ ) (L.1t) (v seC) (D1t)

1bm ft )g( lbm)h
8c Tbf secz) \P 183

The individual unit-properties and exponents on each side of the
equation must be equal. For example, for 1bf

(bfyt = (1bf)> T €78

Writing successively the equality for the exponents for each one of the
unit-properties such as 1bf, lbm, etc.

1bf l=at+tc-g g=a+tc-1
Ibm 0O=g+h ' h=-g=-a-ct+1l
sec’ 0=-2b+c-e-2g e =-2b+ c - 2g
=-2b+c-2a-2ct2
= -2a - 2b - c_.+2
ft -2=-atb-2c+d+et+tf+g-3h
=-a+b;2c+d-2a—2b—c+2+f+a+c-1+3a
+3c -3

z=a-b+tct+d-2+1 ' f=-a+b-c-d

Substituting these values of g, d, e and f in the original equation
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<%> i} C(T)a(g)b(pf)c(L)d(v)-Za -2b-c+ Z(D)—a+ b-c-d
(gc)a+ c - l(p)-a -c+1
Rearranging

(Fgc> i} C(Tgc )a<g>b(uf gc> C(}:)d

pAv2 pvZD v pvD D

Checking units in each of the groups in the preceding equation shows
that each group is dimensionless in that the units of the numerator
cancel the units of the denominator. Such groups occur frequently

in fluid flow and heat transfer and are called dimensionless numbers.

These dimensionless numbers have been given names. Thus the
previous equation may be written:

_{ Euler ) N
(Eu) - (Nnmhpr -, - vho v~
* ’ ( Weber ) (b'rOude) (Keynolds)
Number Number Number
; d ' General
= C(We)_a(Fr)_b(Re)_C(£> Drag
D :
Equation

Drag equation by ARDA associative method. With experience examina-
tion of the defining equation enables direct writing of the dimensionless
number equation.

(‘E): f(T, g, uf, L, v, D, p)

By inspection
F . . .
x involves the force dimensionless number Eu
T involves the surface tension number We
g involves the gravity dimensionless number Fr
M involves the viscosity dimensionless number Re

L and D result in the dimensionless number L /D
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The required relationship is then

Eu = f(We,Fr,Re.%) or Eu

or
a b c{L d
Eu= C(We) (Fr) (Re) (5)

Flow region 1. Flow at very low Reynolds numbers is considered as a
first region, applicable to slowly falling rigid bodies immersed in
fluids. For laminar flow the drag (F/A) is not proportional to velocity
squared, v°, in the Euler number, so the effect of Eu must be negligible
or (Eu) = 1. Also the shape of the solid body is not determined by
surface tension, T, so that (T)a = (T)O = 1 or a = 0. The general equa-
tion then becomes:

d
Eu= 1= C(We)'o(Fr)'b(Re)"°<%>
The values of C, b, ¢ and d must be determined experimentally. For
Re < 2, experiment indicateds that C = 18, b= -1 and ¢ = 1 for a sphere
d
for which LL = D so that (—I]S-) = (%) = 1.
1 = 18(Fr)(Re)? or 1 = 18 Fr/Re if Re]
is based on D
s (Ef_gg)
Dg/\ pvD
MEVY Ec D?
= l8(pD2) p [where i R
£ o) )
e (V e - \arz
w A ' w
Al=]) =1 =23 = (=
(V) 8<?—> where ( C) (g)
w w i MV C o
{(:\,—) - (—\7) . ] = 18(——2—> which is Stokes law
sphere fluid R v
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Stokes law is generally assumed applicable from Re = 0 to Re = 2.

Flow region 2. For drag on a ship the surface tension T is negligible.
Thus (T)* = (T)° =1, ora = 0. Customarily (Cp/2), where Cp is a

drag coefficient, has been used instead of Eu. The general equation
becomes:

d
(Eu) = C(We)-o(Fr)“b(Re)-c(P-) = f(Fr, Re, ld—)
D D
¥ C
<pAg:Z> = —ZI—D— = f(Fr, Re, %) where A = L2

2 \ 2
< = o (52) <[ fe me FJa(sn)

Flow region 3A. If surface tension T and gravity g are unimportant,
then (T)® = (T)® =1 0ora = 0, and (g)b =(g)°=1o0orb=0. The general
equation becomes with (Cp/2) written for Eu

G ) ) _ d
(Eu) = (-—212) = C(We) 0(Fr) c)(Re) C(%)

d
Cp = 2C(Re) -C(%>

Experimental evidence by Lapple and Shephard (16, 18) for solid bodies

d
L
of (B) = 1" =1 in the region having Reynolds numbers greater than

that for which Stokes' law applies (above Re = 2), indicates
Cp = 18. 7(Re)™ %8
There is some indication that this region may extend to Re = 700.

Flow region 3B. If surface tension T and gravity g are unimportant,

then (T)? = (TY° =1 0ra=0, and (g)b = (g)o =1 or b=0. The general
equation becomes:
-0 -0 -cf L d
(Eu) = C(We) (Froude) (Re) (5>
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m W
Using[—]|= =|{—)andifd =1
g(gc) (Vgc> <Vg>

where
W
AP = |—
- (2)n
or
—éli = H = head, ft
_\f/_.
%)
L\v* .
H = [{(Re)] o7 Darcy Equatmn]

2g
This is the Darcy equation for head loss for turbulent flow in horizontal

' pipe, where f the friction factor is a function of Re = 2C(Re)~%. Multiply
both sides by (w/m)

‘_"’mﬁ = [f(Re)](%> %(%)

where

(-Yv—)::: (—111- or —— = =N , thus
g gc mg  gc¢ :
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Energy drop ft 1bf>_ (l_,_ v?
( Mass Ibm /™ [1(Re)] Dj2g,.

Flow region 4. If the effect of viscosity is negligible (|~1,f)C = (p,f)o =
or ¢ = 0. The general equation becomes

(Fu) = (_(_32_12) = C(We)-a(Fr)_b(Re)o(%>

If -a =3 and b =1, this becomes

d

(S_D.)_CLWe_P_ (We) (Re)*
2 ) 7 (Fr) - " (Fr) (Re)

2 3

(pv D) (Re)"‘
=C TgC
52 (22)
Dg/\nfge
/3_ 63\ /. \N/711 .4 _ 4\

L (=19 R <

N \ENF A )R

4
C<g l;‘fr gC) (Re)4

= C(G)(Re)*
where
G = dimensionless number, unnamed
__(we)? Comparing last and first]
- W equation for Cp/2

The dimensionless number G has appeared in the literature in discus-
sions by Rosenbei'g (17), Peebles and Barger(18), and Fritz (10), with
some evidence to show that the relation (Eu) = C(G)(Re)* is applicable

for Re 700 to 1300,

Flow region 5. 'If surface tension T and gravity g are important, the
dimensionless numbers We and Fr containing these properties are
important. It may then be assumed that the other dimensionless
numbers, Eu (containing F') and Re (containing pg) and (I_,/D)d are

L\d 1,\o
unimportant, or Eu = 1 and (Re)C = (Re)o =1, and (B) = (B) = 1.

The general equation then becomes
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C
Fu=1= c =

(Wey (Fr)P(Re)®  (We)*(Fr)®

This appears to be a region above Re = 1300, for liquid N, at 14. 7 psia
139 F for which Fritze (10) gives

T 025

1 =
pv
1.20
[(vaD)(_vf_)]o'zs
Tg. Dg
> 4
1 (1.20)

or
(1.20)* = 2.08 = (We)(Fr)
Evidentlya = b = 1.

Flow region 6. If surface tension T is dominant, the effects of velocity

v are less dominant. Terms with v* have negligible effect or

¥ 2 \O
Eu = ( gcz) = (Eu.)o =1 and (Fr)b = (—gjg-) =1

The general equation becomes

-a -0 -cfL d
(Bu) = 1 = C(We) *(Fr) °(Re) (5)

Experimental evidence of Schmidt, Kaissling and Rosenberg correlated
by Peebles (18) and Fritz (10a) as their region 3 indicates

1
[DpTg.|?
Re = 1.91 — Where Re is based on D
: U“f Ec
- 1
= 1.91 7 T
[\ PV D/\Rf 8¢
1
= 1.91[ (We)(Re)?] * Where We and Re are

based on D

68

-




DRAG DOMAIN

(Re)® = (1.91)* [ (We)(Re)? ]

Tg
1 =1.91%(We) = 3.65< ZC )

pv- D

It appears that (Re)“C =1=Re® or c=0and pc = po = 1 or viscosity

has little effect.

Summary. Results are presented in the tabulation. The Re ranges of the
various regions are approximate and the regions themselves are tentative
as there may be more regions in which certain properties are dominant,
these regions merging one into another. More study of the literature

is desirable. Sufficient has been given to demonstrate that the ARDA
dimensional analysis method and the resultant general drag equation

can be applied to data in the literature to present an overall correlation
and perhaps better visualization of flow drag phenomena in general.
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DRAG ON BODIES IN FLUIDS BY ARDA

.

. . C - . - d
Region Properties (Eu) = (__:2_1_)_) - cwe (Fr) b (Re)™S (_]I:),_)
Extent of these 4 % : '
regions is i = _ -a -b -c
defined with Re é %: {Euler) = C(Weber) (Froude) = (Reynolds) ~ (Shape Factor)1
o - - -
based on D Q 20 (E_ _g_g) i} C(PVZ D) a (-v_z-) b ‘ (va) [of (l_;_)d
PA v? Tgc Dg , Kf B¢ D
LA (2&) (L) (z)°
pv: D 2 pvD D
d
1
1 A(% T {[(Eu)=1] = 18[(We)°= 1] (—l‘)f-) (“fngc) (g-)
Stokes Law g P
rigid sphere in v
laminar fluid e | Eu A(%) = A( ) 18(%—) Stokes Law
Re <2
Fge o -b -c L\d
2 T = Cl(We) =1} (Fr Re (—)
p <p sz> | [(We)®=1] (Fr) (Re) 5
Drag F on Ship v c
of Cross _ L\ *D .
Section A = Cf(Fr, Re, D) == Sh;p Drag
d
F C -
3 bt <——g-%-> ()= ctwa®=11 lFn®=1) e (B)
3.a. Solid v PAV')
body in laminar g
fluid Cp = 18. 7(Re) 088 Lapple and Shepherd
Re 2 to 700
3.b. Pressure
drop turbulent _ L\ v .
flow horizontal H = [{(Re)] (D) 2g Darcy Equation
pipe
4 T - -
" 1ER) = cwe™  (Fn®  [(Re)°=1]
Surface tension 2
dominant 8!‘{4 g
Re 700 to 1300 _ s - C)
CG(Re) wherq G (—pia—
5 T |p |[Eu=1] = C(We)! (Fr)?t [(Re)®=1]
T and g F _
dominant 2. 08 = (We)(Fr)
Re > 1300
° TV lBa=1] = cwe?® [(Fr)°=1] Re™© (‘g)d
Re > 700 _
1 = (1. 91)% (We) Schmidt, Kaissling, Rosenberg
via Peebles
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DRAG ENERGY. Consider the fluid flow element.

AP

Force AF —m - —»Velocity Vv

-« —  Drag=F — =
Density = p

(Drag Energy)

il

(Drag) L

I

FL

(AF)L

A 2 a4 A=y
Ll U R e}

VAP

A(PV) for incompressible fluids

Thus for incompressible fluids any decrease in flow energy is used to
overcome drag.

ECKERT NUMBER. The Eckert Number occurring in heat transfer is
a conversion of kinetic energy to heat capacity.

EJE = (Heat Capacity)

Eckert Number
EC =

Dimensionless

()

= (Heat Capacity)

1 mv?

_ _2gcd

meAT
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ELASTICITY DOMAIN

1 sec
2 Btu 1bm ft ft 1bf
B e 1 7
(Cp ITbm F) <AT Fj(BZ 2 1bf secz) (7 8 Btu )

ELASTICITY DOMAIN. ARDA analysis gives

Ca =fcn(Fr, We, Eu,Re)

Derivation of elasticity domain. Elasticity is usually defined by the
modulus of elasticity E.

E - (Strefss’
Strain

1bf 1bf
_ (Pressure e (P fi) _[PL 1bf
“[change in length ft\ = (AL ft\ ~\AL e
\original length ft Lft

E = (D) (p)° (g)° M @°(T) (P)E (up)”
: b /- Cc d e
1bf 1b lbm £ f f
(E F) =C(D ft).a (p ftrn) (gc 1bfnslet:2) (v séc) (g setcz)
f g/ h
1bf 1bf 1bf
(m %) (e'R8) (o ofe)

1bf l=-c+f+g+h c=f+g-1+h

i
o+
1
oo
11

it a-3b+c+d+e-f-2g-2h
-2

f

a+(-3+3f+3g+3h)+(f+g-1+h)
+(-2f-2g-2e+2-h)+e-f-2g-2h
za+f-e+h : a=-f-24+e-h

Ibm 0=b+c

=b+f+g-1+h b=1-f-g-h
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sec 0=-2c-d-2e+h

=-2f-2g+2-2h-d-2e+h d=-2f-2g-2e+2-h

-f -2 - h 1 - f - -h f -1 h

E = C(D) T p) €7 Mgy BT
-2f - 20 - 2 2 -h f h

(v) g e g° T PE(ug)

(E¢) c(s%)(gg_ '(Pag g(&g&)*‘
pv v v-pD pv pvD
(Ca) = C(Fr) (We)! (Ew)® (Re) ™

This is also obtainable as a special case under Flow Domain.

ELECTROMAGNETIC DOMAIN, ARDA analysis gives

Rm = fcn (Rm, Eml, Em?2)

Derivation of electromagnetic domain. For electromagnetic phenomena
occurring in radio antennae, cavity resonators, eddy currents, skin-
effect in bus-bars, transformers, etc. (24, p. 116):

I
(11) =fcn (E, €, Kps O H L, t, Jy)
where

(EIE) = current density, aTTzE

volt
ft

E = electric field strength,

. ‘ 2 2
€ = electrical permittivity, __Larrllbf fstezc

. o 1bf
Mp = magnetic permeability, -a?n—p-z

o = electrical conductivity, ;%%

H = magnetic field strength, a-TTP- |
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L= length, ft

t = time, sec’

Jm = conversion-constant factor, work to joule electrical units
ft 1bf
- 0.738 2L _ o, 738
joule amp volt sec

These units are more completely defined under the section on
Electromagnetic Units.

Iam volt \* amp’ sec? b bt \© amp d amp €
L7 gt =C(E ft ) (e 1bf ft? ) (“p ampz) (" voltft) (H ft )

ft 1bf .)h

f g
(L ft) (t sec) (Jm amp volt sec

amp 1=2b-2c+d+e-h
1bf 0=b + ¢ +h
adding 1 =b -c+d+ e _ c=-l+b+d+e
From O0=-b-1l+b+d+e+h ’ h=1-d-e
1bf '
volts O=a-d-h

0O=a-d-1+d+e | | a=1-e
sec 0=2b+g-h

0=2b+g-l+d+e g=1-2b-d-e
ft -2=—a-2b-<i—e+f+h

-2==-1l4e-2b-d-e+f+1-d-ce
f=-2+2b+2d+ e

(1];2) e (E)l - e(E )b (Hp)-1+b+d+e(g)d(H)e (L)'2+ 2b + 2§+e

1-2b-d-e

(t) d-e

o)t
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ELECTROMAGNETIC FLUID PARAMETERS

2 d 2 b -€
12 ,LchrL g € L JnEt

ImtE [\ Tt £°

2
Hp 1.

Fp HIL
(Rm) = (Rm)Y(Em1)® (Em2)™®
1 = (Rm)? (Em1)” (Em2)°

This equation is really a special case of the magnetohydrodynamics domain
equation in which the force parameter Eu = 1.

where
d-1= a, -~-e =2¢C
Rm = magnetic Reynolds number

Eml

electromagnetic dimensionless number 1

Em?2

electromagnetic dimensionless number 2

The dimensionless numbers kml and Lm¢ do not seem to have acceptea
names. ’

ELECTROMAGNETIC FLUID PARAMETERS. Analysis in this domain
has indicated the existence of a number of parameters some of which have
found names and others which will be designated Em1, etc. Also see
under Electromagnetic and Magnetohydrodynamics Domains,

Magnetic Reynolds Number
Rm = . .
Dimensionless

2
HpT L MpT Lv
“\ It /T Im
1bf amp 2 r02
(HP ampz) (U volt ft ) (L ft
(O. 738 —-—f-‘-c-ﬂj-f——) (t sec)
amp volt sec

Rm = (Re)‘l(Em3)(Ha) [ Also see under Magnetic
Reynolds Number]

Also, (see under Magnetic Reynolds Number)

I

‘2 1bf 20,2 I amp
HpL i—z)_ <|J~p amp?')(L ft)(Lft )

IJmtE (0. 738 ft 1bf )(t Sec) (E volt)
volt amp sec £t
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Electromagnetic Number 1)
Dimensionless

2
—7— | = (bpe V)
2

1]

t

1bf amp’ sec?\[ L2ft?
ampz € 1bf ft° t°sec”

v N (Fluid Velocity)z
- ( 1 ) ~ (Electromagnetic Wave Velocity)®

Bpe

p
Mp

This parameter is of interest because in a vacuum the velocity corre-
sponding to Fp and ¢ in the vacuum is the velocity of light (31, p. 27-5).
Electromagnetic Number 2
Em?2 = . .
Dimensionless

1

(JmEt)_ Im E
ppHL p.pHV

ft 1bf volt
(0' 738 amp volt sec)(E ft )

1bf amp ft
(“P amp2)<H ft )(v sec)

Electromagnetic Number 3
Dimensionless

Em3 =

m lbm , ft?
Tbm _ft Y ool ( 1bf>
gc 1bf secz V it . Inertial Stress -f-tj-

- = Ratio
| 1bf S ampl _ —
‘ (HP ampz) (H ftg ) (Magnetlc Stress EEZ—)

2(Kinetic Energy 1bf ft
vV ft®

| - (Magnetic Energy 1bf ft)

vV ft’
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(Hartmann Numbe r)
Ha =

Dimensionless
MEZU H? 1.2
HfIm
2 lbfz)( amp )( 2 am Z)( 2 2)
———ﬁ- f
(*L arn}?f 7 Volt ft H ft Loft
3 ft 1bf
M amp volt sec

1bf sec
Mf "'f't—“z

_ (Magnetic Viscous Stress)
" (Ordinary Viscous Stress)

Magnetic Prandtl Number
Pm = ; N
Dimensionless

ARIN) (viagneric Keynoias INumoer)

~ (Re) (Reynolds Number)
<|.J~E o Lv)
Jm Hp T HBf8c
< pvL > IJmP
HfEc

1bf amp >< 1bf sec) < 1bm ft )
2T
_ (Hp am?) <0- volt ft)\"M f£t2 32 1bf sec?

- ft 1bf Ibm
(0' 738 amp volt sec)(p ft )

where
Mp = magentic permeability, 1bf/amp?

€ = electrical permittivity, anrlpz sec?/1bf ft?

H = magnetic field strength, amp/ft

E = electric field strength, volt/ft

¢ = electrical conductivity, afnp/volt ft
L = length, ft
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t = time, sec

v = velocity, ft/sec

(-
3

conversion constant factor, work to joules

1

0. 738 ft 1bf/joule = 0. 738 ft 1bf/amp volt sec
g. = conversion constant = 32.2 lbm ft /1bf sec?
ELECTROMAGNETIC UNITS. Electromagnetic field quantities are

established by the following laws, expressed by equations in engineering
units of lbm, 1bf, ft, sec, amp and volt.

Conversion factors to other systems of units. If it is desired to express

these quantities in other units such as MLT units, a conversion factor

1b ft
such as (gc —ﬁ;n—l sec) may be used to eliminate force by

expressing it in mass units. In the case of electrical phenomena a
fourth unitbesides mass, length and time is required as a minimum
(23, p. 87; 24, p. 43). This unit can be an ampere, a unit of p, €,
etc. In the MLT amp system a conversion factor of

lbm ft 5 ft 1bf
Ec Tbf sec m amp volt sec

would be required to eliminate volts by expressing it in MLTA units.

Force between two magnetic poles R ft apart.

F 1bf = (m magnetic pole)(m magnetic pole)

B

P 1bf ft
Also

1 F
LRZ ™ m?

:LEZ (m) = [ Definition of H]

F = ppH R? known as magnetic force
—( &13%3 (I—I2 Ibf? ) sz’cz) lternatel
= \"p Tbf it poles? y alternately

_(pp -———zamp ) (H _—%ft )(R ft
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Force between two electric charges R ft apart.

(g coulomb)(g coulomb)

F 1bf = 1
coulomb (R21t?)
1bf ft?
q2 au’np2 sec?
= 2 2
amE secC
(‘ 1bf ft7 >(R )
Also,
A E
eR® ™ ¢°
F F\? 2 s
RE° E = (EJp) [ Definition E]
F = ¢E*R?J 2 [Force of Electric Field]

2

2 2 21,2
amp‘ sec » volt 2..2 e ? ft°1bf
= (s —P—lef Tt ><E )(R ft )(0. 738 —3

ft? arnp"‘vol‘c2 sec

Biot law for electric field strength H.

g Y (Iamp Lft)
pole R* ft°

Evidently,

(H Hgfe) - (H a__f_an) = magnetic field strength
P

E electric field units.

E F _ F 1bf
" JIma ft 1bf .
(Jm amp volt sec (q amp sec)

_ F volt _Evolt
" \JIma ft /)~ ft
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e electrical permittivity units.

2 2
. U
G:FRZ [FromF_eRz]

2 2
<gz arnpz sec2> o 2mp’ sec

F 1bf R%ft° 1bf £t

To eliminate force units

2

(€ Trp) =<e a—mPZ—S%C—Xo. 738 ft 1bf )

1bf ft amp volt sec

_ arm secC
= (0.738¢) __R__volt n

H magnetic field strength units.

By definition

F m mm
H=[— = =7 [-fromF:—ﬂ—]
(m) Mp R wpR
F\? F J21? :
H? = <r—n-> = <|~L RZ) = < R [ Biot Law]
P
H ='I—Er—;:£ [ Assuming L ft = R ft]

Mp magnetic permeability units,

F 1212 .
<Hp RZ) = ( = ) (Biot Law above)
F .
— =1 [Assuming L ft = R ft]
Kp

F1bf \ 1bf
1 amp?) ~ Fp arnp2

To eliminate force units

: 1bf
<|“'“E > B Hp amp _ < Mo ) volt sec
o) "\ 7ag £t 1bE 0.738) amp ft

amp volt sec
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o _electrical conductivity.

1 1

o = —— = [ where R = resistance]
(Resistivity) R(é‘)
L
IL \
VA [where I = R volts ]

Iamps L ft ) - -2mp
V volts A ft?)~ ~ volt ft

ENERGY RATIOS. Dimensionless numbers may be frequently interpreted
as force ratios (see Force Ratios). If both numerator and denominator
arc multiplied by distance L they are also FL or energy ratios. A
typical example follows dependent on its nature either a force or energy
ratio or some combination may be taken as most descriptive.

Eu =

(Flow Energy) 2Pgc  (PV)
217 i T . L e\ = 2 = 1T7TN
A Rt il - 30 2V 3 | i \NT 7

EQUATIONS, DIMENSIONALLY CONSISTENT. The ARDA concept is
based on the premise that every equation must be dimensionally consistent.
The units and exponents on the left-hand side must equal the units and
exponents on the right-hand side of the equation. This principle is appli-
cable to the equation as a whole and is also applicable to each one of the
unit-properties.

EULER NUMBER. This number expressing a force F per length squared
L? is encountered in fluid flow and is sometimes called a force coefficient.
The length L is a significant length or distance in the process or LZ may
be an area so that F/Lz = F/A may be a force or drag per unit area or a
pressure P or pressure difference AP. The Euler number is encountered
as a drag coefficient Cp = 2 Eu, a pressure coefficient (24, p. 88) and
even a wall boundary shear stress varying with the nature of the problem.
Dimensional analysis does not yield a physical picture so that additional
consideration of the physical phenomena is necessary for proper interpre-
tations of Eu.

The velocity in Eu is the flow velocity.
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EULER NUMBER

Units
(Euler Number>
Eu = . .
Dimensionless
1bf 1bm ft
Pge (P E:T><32‘ % Tof Secf)
- pv2 - 1bm o2 ft
P ft sec?
1bm ft
- Fg. (F 1bf) (32. 2 ot sec?‘)
u = 3 = 2
f
pAv (p 1bm> (A ftz)(vz t )
ft secz
CD>
Eu :< >
where

P may be AP
A may be L2
P may also be replaced by the shear stress S (1bf/ft?) since from

a dimensional analysis standpoint it has the same dimensions.

When S has been used it has been called Fanning Number
(24, p. 135), but the introduction of another name for the
same kind of dimensionless number is probably unnecessary.

Euler Number in terms of pressure head. Pressure P may be expressed
in terms of head H.

P = H(E) where(lv-)=<—n}-)or w o= =g
v g/ \8¢ gc
m g
-H=—
V g

Thus,
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£
Pgc Hp(gC)gC

Eu = sz = p;z
ft
f —
_Eg__ (H t><g sec)
h v B ‘VZ ftz
sec2

EULER NUMBER

The Euler number expressed as (Hg/v’) resembles the Froude number as
(Lg/v®) but His a pressure head, whereas the L or D in the Froude number

is related to object size.

Euler number in terms V cu ft per second.

Pge Pg. Lt
pv2 - p(sz)z

1bf 1bm ft 4
:PE"L4 (P ?;T)(gc Thf gprz) (L ft)

TopvE T bm\/. ft° \*
Pt Vsec:

Fuler number in terms W

Eu

il

po . Ve Fvge  Fg
U= pLZV3 - pL,zv7 - pL,zVZ

Power W in terms Eu.

oo (25522

(FND)gc
= _—2——3_
pD°v
. (V'v ft lbf)( lbm ft )
We. sec /\8C 1bf sec?

= 2 3 =
pD%v (p nf:tm)(D ft)z(v ft T
sec
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' EULER NUMBER

(V'ng)
Eu (Eu)(St) _ pDZv3
(SW2~ (S’ (N’ D’

v

. @ﬁmf( lbm ft
< Wgc \) sec Ec 1bf sec?
= 5 -

N°D°) T [ lbm 1\ ,
i (p ft )(N sec) (D ft)s

Eu as a number of velocity heads.

P Number of
Velocity
Pgc P P Heads Cp
Eu = 3 = = = = 2 b 2
S e )
gc Vv gV 2g

Eu as a pressure force parameter. Euler number may be defined as a
ratio of forces. Force of acceleration is also known as inertia force.

Fua = (Force of Pressure) __PA
" (Force of Acceleration) ~ <r_n__)a
8c
PAg, PAg. Pg.

1]

(5 GaG)

The pressure P may also be a pressure difference AP.

Fu as a drag force parameter. Euler number may also be defined as in
terms of a drag force on the wall.

Eu = (Drag Force) __F
~ (Force of Acceleration) ~ E—)a
€c
Fgc Fgc Fec

=

m(E) G
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EULER NUMBER

_(Force of Pressure)
(Force of Acceleration)

may have both numerator and denominator multiplied by (V/A) to obtain a
(Flow Energy)

(Kinetic Energy)’

v F
Fge FgC<A) _ (A)Vgc __Pv
pAv® T [m av(Y T mv? T (mv®
\% A gc

(Flow Energy)
2(Kinetic Energy)

Eu as a energy ratio. Euler number visualized as a

ratio of

Eu

Eu in terms of Ma.

P
Fu = grc
pv

1
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FALLING BODY

Fluid flow element. It is convenient to consider an element of flowing
fluid.

AP

|
4
-
Force AF —— : - | ———m=Velocity V
A
S i
~
~
[ S —— L ——— R
- Drag=z=F ——— .
Density = p Perimeter P
FIG. FLUID FLOW ELEMENT

Fluid flow may be visualized as a continuous variation of forces on a
fluid particle to change the particle velocity.

If the overall fluid velocity does not change these forces and velocites are
internal (or microscopic).

Kinetic energy is the work (ft 1bf) energy used to produce an overall
(macroscopic) velocity.

Euler number is a ratio of the flow energy (PV) used to produce an
external kinetic energy of an overall velocity in a given direction.

When flow energy (and potential energy) are not completely converted into
external kinetic energy, the remaining part results in internal kinetic
energy in which the fluid particles are each moving with varying fluid
velocities in various directions (disorder) in turbulent flow. This move-
ment may be frictionless or some of the energy may appear as heat
tending to increase internal energy unless removed.

FALLING BODY. A freely falling body in mechanics falls a distance S
which may be presumed to be a function of weight, gravity and time.
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FLOW CONCEPTS

a ft b C

Sft = C(w 1b) ( —S';—C—z') (t sec)
}E 0=a a=20
ﬁ:- 1=>0 b=1
sec 0=-2b+C c=2b=2

S = c(w) (g)!(t)?

= Cgt? [ weight has no
effect]

FANNING NUMBER. See Euler number.

FLOW CONCEPTS. One concept of fluid flow has been given under
Reynolds number in which semi-microscopic particles of fluid are
conceived of as varying continuously in velocity in one direction from
zero to v where v is the mean fluid velocity in feet per second. One
hypothesis is that turbulent flow exists in which small elemental
volumes V of fluid, as a result of viscosity forces, are continually
varying in velocity from 0 to v in the direction of main stream macro-
scopic velocity, this 0 to v acceleration change of velocity being super-
imposed on the macroscopic velocity. This variation of 0 to v velocity in
the direction of flow can exist only if the fluid elements are rotating with
a peripheral velocity v.

The picture of turbulent flow with viscosity then emerges on a semi-
microscopic scale as that of Fig.

oy Viscous Shear

Macroscopic /}
ft

. Periph.
Velocity v sec Velocity
- vt

sec
FIG. SEMI-MICROSCOPIC TURBULENT FLOW

87




FLOW DOMAIN

Here the fluid is pictured as semi-microscopic elemental cubes or spheres
of volume V all rotating in one direction with the viscosity shear resistance
forces between elemental volumes requiring the expenditure of work. The

rotating cubes or spheres are moving with an overall velocity v.

FLOW DOMAIN. For the flow of fluids ARDA analysis gives

Eu:fcn(%, Fr, Sh, %, Re, Ca, Fa, We>
Derivation of fluid flow domain. A general equation may be developed for

the interaction of an elastic vibrating solid with a fluid. Usual symbols
are applicable with the addition of the following special symbols.

0

angle presented by force of solid to moving fluid

¢

angle formed by movement of center of gravity of solid with
respect to moving fluid

E = modulus of elasticity

S shear modulus

n
I

frequency of vibration or rotation

: c
F Ibf = C(6 deg)® (¢ deg)® < s—fe‘%) (m 1bm) (D £t)€ (L £ty

1bm g it h 1bm ft 1( 1bf sec:)J
P T3 g sec? Ec Tpf sec?) \Pf T g?

oL kEmfmSqun 1bf\P
sec ft? ft2 ft

deg 0=a+b b=-a
1bf l=-i+ j+m+n+p i=j+m+n+p-1
sec 0=-c-2h-2i+j-k
=-c-2h-2j-2m-2n-2p+ 2
+j-k c=-2h-j-2m-2n
2p+ 2 -k
Tbm O=d+g+1i
=d+g+j+m+n+p-1 g=-d-j-m-n-p+1
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FLOW DOMAIN

L)
-+
[eo]
It

c+e+f-3g+h+i-2j-2m -2n-p

o
1

(-2h-j-2m -2n-2p+2-k)+e+ f

+(3d+3j+3m+3n+3p-3)+h

+ (j+m+n+p-1)-2j-2m-2n-p

ch+j+3d-2-k+e+f+p f=h-j-3d+2
+k -e-p

F = C(e)a(d))-a(v)_Zh -j-2m-2n-2p+ 2 -k

(m)? (D)®

h-j-3d+2+%k-e - ~-d-j-m-n-p+1
(L) J P(p) J n-p

)j+m+n+p-1

)" (gc ) 6)F ()™ ()™ (T)P

2o o) () () (20 ) (2 ()"
(5 (e

d e .
EwW?=c (%) (Fr) <?> (Sh)k (%) (Re)’ (Ca) T (Fa)™ (we)P

where

(Eu), (Re), etc. are dimensionless numbers.

(Eu) has been replaced by (Eu)q.

[m

: (——3
The expression oL is obviously a statement that —14-2 =1orp= 3

p

which can be dropped as unnecessary.

The preceding equation contains a number of terms because of its
comprehensive general nature. In any specific application,dimensions
not applicable are omitted by considering that the exponent is zero or
mathematically: (property)? = 1. For example: for incompressible fluids
the effects of elasticity are omitted by setting (E)™ = (E)° =1, also

m 0
(Ca) = (Ca) =1.
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FLOW DOMAIN

In a similar manner any property not included in the preceding general
equation may be included by including its proper dimensionless number
as discussed under the associative ARDA procedure.

One term frequently added is roughness, included as a dimensionless

length number %‘ (28, p. 128).

Fluid domain equation by force summation. Fluid flow may be visualized
as a macroscopic flow of a vast number of microscopic particles. The
motion of the microscopic particles is constantly varying in velocity, the
varying force of acceleration or deceleration F_ being provided by the
algebraic sum of all forces acting on the fluid particle.

Some of the forces that may act on the fluid particle may be viscous drag
force FH’ force due to pressure Fp, gravity force Fg.' surface tension
force Fp, elasticity force Fg, shear force Fg, etc.

It was shown under Dimensionless Numbers as Ratios of Forces that

each one of these forces may be expressed in a dimensionless number,
thus

Flow Motion = £(Fry, Fy, Fp, Fg, F7, Fg, Fg)

(Fm FP Fm Fm Fm Fm>
"\F, 'Fm’ Fg Fr Fr’ Fs

= f(Re, Eu, Fr, We, Ca, Fa)

If any of these forces is absent, the particular dimensionless parameter
is absent. If any other property is present that may affect the motion of
the fluid particle, it should be added to the functional expression for
properties and its corresponding dimensionless number should be added
to the functional expression of dimensionless numbers.

Thus, if angles such as 6 and ¢, frequency N, and significant length
parameters such as D are to be included they, along with their corre-
sponding dimensionless numbers are added to form the complete fluid
domain equation and the preceding relations become

Flow Motion = f(Fm, F

FP’ Fg, FT, FE’F e’ ¢’ N: D)

H’ S’

Eu:f(Re, Fr, We, Ca, Fa, '(%, Sh, %)
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FLOW ENERGY

FLOW ENERGY. This energy in ft 1bf possessed by a flowing fluid is the
work required to push the preceding fluid.

FE = FL = (PA)L = P(AL) = PV = (P %’,f-) (V £t%) = (PV) ft 1bf

Flow element. Consider the element.

AP

AF g A

es—— AL

-
F = Drag
Flow energy change.

AFE = A(Flow Energy)

1l

A(PV)

f

PAV + VAP

PAAL + LAAP

H

FAL + LAF

!

=AW 4+ LF
= AW + Drag Work
where AW = AWork to change value of fluid.

Thus, any flow energy decrease is used to overcome drag.
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FLUID DRAG

FLUID DRAG. This is also treated under Drag Domain and Fluid Flow
Domain. For drag of a viscous fluid only

a b d e
1bm 1bf sec C ft 1bm ft
F 1bf =C (p T ) (p.f il ) (L ft) <v -—-—> (gc Tof sec? Secz>

sec
1bf l1=b-e e=b -1
lbm O=a+e

O0=a+b-1 a=1-Db
sec 0=b-d-2e

=b-d-2b+2=-b-d+2 d=2-b

ft 0=-3a-2b+c+d-ce
=-34+3b-2b+c+2-b-b-1
=-2-b+c c=2+Db

b

F-cie) " Pt (L2 P TP ]

Drag Domain

Thv . b4
is is a special case of {Fluid Flow Domain

(Eu) = f(Re)

FLUID DYNAMICS NUMBER. This unnamed dimensionless number
is encountered in the literature (10).

Fd]_[guf‘*gc“ __(We)®  (Bo)(We)
“LeT?e 0| (Fr)(Re)* ™ (Re)*

get ] (We)’
pT3g. 3™ (Fr)(Re)* (ge)*
[VZL‘r
. Tegc .
v I Dvp 4
EgL] LtfgcJ (8c)
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FORCE

i1
=7
o 1S
Ll
|10
L 'S
>
[SHRR
e}
.a-‘o'b
[
o
0
»

p’vé 1.2\ (2gL uf"gc“)( 1)
T3gc3 v D4v4 p4 gc4

FORCE. A force is a '"push.'" Force is required to accelerate or

decelerate a mass in accordance with the Newton acceleration law
written as a unit-consistent equation in engineering units as:

(2

F 1bf = m lbm a it
32 2 1lbm ft sec
"“ 1bf sec?

The previous equation does not contain weight w or gravity g. For a
discussion of weight see under Weight.

FORCE RATIOS. Dimensionless numbers may frequently be interpreted

as force ratios. Typical examples follow. If both numerator and
denominator are multiplied by distance L they are also FL or energy
ratios (see Energy Ratios). Dependent on its nature either a force or
energy ratio or some combination may be taken as most descriptive.

Number Ratio Formula Use

wBAT F Buoyancy

(X_ V) AX Due to
N _ (Buoyancy Force) _ L:wBAT _\LAL/ L AT
¢ T {Viscous Drag Force) B vV T me Drag
g £ K
_ (Gravity Force) _ w
Bo = (Surface Tension Force) ~  (TL) . Bubbles
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FOURIER

NUMBER

Number Ratio Formula Use
5
c _ (Drag Force) _ 2Pgc  \A
D (Inertia Force) T pv? T EE)
, A
1 rn)vZ KE
. 2 A\ T —
C
P (Inertia Force) _oovoo_2\ee/ L 1,
r =  (Gravity Force) T ogL T g(g_n__) T ow
gc
F
Al
Re (Inertia Force) _ pvL L Flow
(Viscous Drag Force) ~  pg m, Similarity
St 3 Fr)  (evec) _ (Viscous Drag Force) Stokes
- Re/ ~ (pRzg) - (Gravity Force) Law
L(&)Vz
2 gc KE
We (Inertia Force) _ (pv: L) ~ L L
(Surface Tension) T (2Tge) TL “TL

FOURIER NUMBER. This number occurs in transient heat transfer involving

conduction and heat capacity.

(Fourier Number)
Fo = . .
Dimensionless

(k Btu ft )
hr ft* F

t hr )
1.2 ft?

&) - (R

where a = thermal diffusivity ft? /hr.
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FROUDE NUMBER

FROUDE NUMBER. This number expresses the effect of gravity g.

(Froude Nurnber)
Fr =

Dimensionless
, ft?

ve—
v sec

gL ft
<g P >(L ft)

Froude Number has been frequently defined as :71—5 but this form seems

inconsistent with other dimensionless numbers which do not have 1/2
powers, thus, is not a preferred form.

Gravity affects flow in general. Surface waves are a gravity effect.

. .t
Froude Number in terms of V. For flow =V —s%

Fr = -V_z. Az)_ (vA)?
“\gL/\AaZ) " gL(LY’
. ft3 2
v <V sec)
= gL’ - ft £orS
_ (g Sec? >(L ft)

Froude Number in terms of (power). For Power = Fv

3/2 v’ Fge
(Fr)”"*(Eu) = Eyz-—ﬂz‘ Tz 2

L Lev
_ (Fv)gc _ !Powerggc
- pL77zg37? pLT/ g /

Physical significance. Froude Number may be visualized as a measure
of the kinetic energy indicated by a velocity resulting from a decrease in
potential energy. Potential energy is dependent on gravity g. When this

aspect is considered L. may be a H so that Froude number may be written
as: ‘
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Froude Number as an energy ratio.

(Fr)

1]

Froude Number as a force ratio.

&):

(Force of Gravity) - (E')g

vy (L ,
Nt/ A\t v
T g gL T gL

Froude Number as (We)/(Bo).

Fr- (Force of Acceleration)

2 2
v L) m) v?L
Fr (We) _ <Tgc (gc) I’TL  ?

v
Bo _W_> T (Y\e el
TL g/TL

FROUDE NUMBER

(Eu)(Fr) relationship. For a complete conversion of potential energy to

flow energy without other energies involved.
AFE = APE

AFE
APE —

1
= AF
2 AFEY ke

KE 1
> PE

i
—
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GAS LAW NUMBER

(Eu)(Fr) =1

(o8 )-

pv gH

(eP) Ee(l)

)"

—_ =1 [where PAV = 0 for
wH

incompressible fluid]

FEu/Fr relationship. In the fluid flow equation.

(Ew) =C( }Fr)® ®Re) ()

(Eu) (F—lr-)- = fcn (Re)

L AFE L PE
2 2 = fcn (Re)
KE KE / ~
EFu as a measure of AFE and Fr as a measure of PE produce fluid flow
as a function of Re.

GAS LAW NUMBER. The perfect gas law is one of the most used and
familiar laws and is expressible in dimensionless number form. A
numerical constant is included.

One formulation:

1bf 3 ft 1b )
(P ft2>(v ft’) = (m lbm) R(lbm F abs (TF abs)

For M mole(equivalent to dividing each side by moles):

1bf\(V ft3 m lbm ft 1bf
(P ftz)(M mole) (M mole) (R Ibm F abs) (T F abs)

(1545 ——ff—&%*r F abs)

il

]

mole F abs
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where
m lbm 0 ] .
<——M mole) = "molecular weight
M = moles
Thus,

Dimensionless Number

Gc =| Expressing Universal J=1 =
Gas Constant
Dimensionless Number

Ga = Expressing Perfect =

Gas Law

(559

GRAETZ NUMB ER

TM)
PV

<1545

GRAETZ NUMBER. This dimensionless number occurs in convection

heat transfer.

It appears redundant in that it is a product of the more

basic dimensionless numbers (Re)(Pr) and (D/L).

Gz

[Graetz Numbe r]
Dimensionless

1

[Zper 2]

il
|
NE
—
Y
[¢]
o]
2

m
v |(3600Cusg | D
k)T

. 1bm
hr >(C

1} 1|
1

—Jl ula

ma 2R

g, F E:J

<8

<

NS

51 O

£

Btu >
P 1lbm F
Btu ft

hr ft? F) (L £t)
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GRASHOF NUMBER

GRASHOF NUMBER. This dimensionless number used in natural convection
equations appears to be redundant in that it involves Reynolds Number and

another dimensionless number (BAT) = <é2>
p

Gr = Grashof Number)
r= Dimensionless
2 ée)
_ (Re) ( p/ (Re’)BAT (Re)(Bu)BAT
(Fr) - (Fr) - (Fr)

2 2.2
L
(ufvfgcz)BAT
) 2
gL
92 1} gBAT v
= e | where prg. = pug = 3500
21bm2> 3 3( ft >< 1 )
— f
- <p ft° (L) (e sec? B F abs (AT Fabs)

2 Ibf?sec? 32 22 1bm? ft?2
Mf e "© Ibflsec?

1

GRAVITY CONSTANT. This or similar terms have been applied to several
constants which should be clearly distinguished from each other, best done
by examining the nature of their units. These constants are:

=a lerati of avity,
g cceleration gravity s

g, = accleration constant in F = (m)va. :
c eq.
lbm ft
=32.2 1hF sec?
G = gravitational attraction constant in F = rgfr{? eq.

10 1bm?
3.01 x 10 Tof ft2
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GRAVITY CONSTANT

Standard gravity acceleration g. The International Committee on Weights
and Measures (32, p. xvi) has adopted a standard value for the acceleration
of gravity on the surface of the earth.

ft
g = 32.1740 —=

cm
g = 980. 665 seC2

Universal acceleration constant g.. If the Newton acceleration law is

considered to be dimensionally unit-consistent:

- (2)

m lbm ft
F Ibf = 1bm ft & Sec?
Ec 1bf sec?

In this equation g is the acceleration constant with numerical and unit
parts. In many systems of units the numerical value of g, is taken as
unity. In the engineering system g. has a numerical value such that

1 1bm has a weight of 1 1bf. Although no international group has
adopted such value it is universally customary to take the numerical
value of g the same as the numerical value of the standard accelera-
tion of gravity g on the surface of the earth.

Thus,

1bm ft
g =32.1740 Tof sec?

_ kgm m
B¢ = 980. 665 gl coc?

This numerical value of g, thus selected is thus an unvarying constant
throughout the universe.

The Newton law and constant g, is used in a so called system of units to
relate force and mass, primarily because acceleration and deceleration

of masses involving forces occur inanyprocess thatinvolves motion, evenin
uniform fluid flow in which the individual particles are moving with

varying velocities.
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GRAVITY CONSTANT

The Newton law not only relates force to mass and acceleration but it

also serves to express mathematically force in terms of mass, length
and time units.

Gravity attraction constant. The constant C in the gravity attraction
law of two masses m, and m, here conveniently designated by the same

symbol m and m which would be the case if they were of the same or unit
size.

mm
F = GI2
F 1bf = (m 1bm)(m lbm)

1bm2 2 2
(G 1bf ft2>(L i)
where

G = gravity attraction constant. Units are selected such as to
make the equation dimensionally consistent.

10° g mass’
= 6.670 dyne cm? (Ref. 33, p. 5)

10" kg mass’
T 6.670 Nm? (Ref. 33, p. 5)

1bf

10" kg’ N 2 m?
<m ng)(4.4482216152605 —-)<0.3048 E{)
2 kp?
=&
(0.45359237 1bm2)

10 1bm?
=3.01 x 10 T

The question may arise as to why this very fundamental law was not
selected to define force in terms of mass instead of using the NewtonF =
ma law to establish the various systems of units. The reason is
probably historical in that F = ma phenomena are more observable on
the surface of the earth than the F = mm/CL? phenomena observable in
the motion of heavenly bodies. There is some inconsistency in not
using this mass attraction law because the laws for magnetic pole m
and electric charge q repulsion have the same form.
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HEAT VALUE NUMBER

mim
F = andF:-in%

These laws are used for the definition of electromagnetic units (see
Electromagnetic Units).

HEAT VALUE NUMBER. It is desired to develop a dimensionless
number containing the heat release or heat value q.

Hy - (Dimensionle s s>

Number

( Btu)
4 1bm

= (Denominator)

Btu
4 1bm

= Btu
<CP 1bm F>(AT F)

—9

CpAT

where the denominator has been completed by inspection by inserting the
two best known dimensions having the proper units.

HYDRAULIC FLOW. Equations such as that of Poiseuille, D'Arcy and
Chezy are obtainable from the ARDA drag equation or flow equation (see
Fluid Flow) by retaining the basic parameters likely to be involved,
namely Euler for drag, Froude for head and Reynolds for flow.

-c
Eu = C(Fr)® (Re) > (—%)

‘Poiseuille laminar flow. Omitting the Fr term as surface is not involved

-1
Eu = 32(Re)-‘ (%)

s - 258
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HYDRAULIC FLOW

1bf 3.3
o_TAPBR® D\ n <Apft)8R ft (th) (Ref. 24, v, 16)
T 128 pg =128 1bf sec L ft Cem P
also,
Ab _ 32(uf Lv) . (Ref. 24, p. 100)
w W\ 2
5 & -
1bf sec ft
) o, )
AH = 32 uf Lv _ ft sec (Ref. 30, p. 98)
w D2 wlbf (D ftz)
v Vit
. where

\./' = volume flow rate, fts/sec
AH = head loss, ft.

Friction factor f for laminar flow. To obtain the D'Arcy equation in.
terms of a head H the flow equation is used with the Froude number
containing H rather than the Eu containing AP. The constant C is the
same as for the Poiseuille equation.

= 32(Fr)h (Re)'1 (%)

1 32 (L
Fr - EE(B\) ()

>_._ (Ref. 30, p. 98)




where

f = friction factor

Chezy laminar channel flow.
derivation of f:

-1
1 - 32(Fr)(Re)“1<9>
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HYDRAULIC FLOW

[By def1n1t10n} (Ref. 30, p. 99)

of

(From Eq. A)

Using the same equation as was used in the

(where P = perimeter)

(Ref. 30, p. 163)

(ref. 24, p. 101)




INERTIA

where

_ /8 [ 8 /g _
C:\/f_ é4_)?/8Re_j/Re
Re

R flow area

wetted perimeter

hydraulic radius = hydraulic depth =

gl o

channel slope (ft drop per ft length)

Friction factor f turbulent flow. Experiment (30, p. 99) indicates

at moderate Re: f = fen <e5’ Re) for rough tubes
f = fen(Re) for smooth tubes
at high Re: f=fen(=
ig e: = fen{g

where % = roughness, ft height per ft tube diameter.

INERTIA, This is a property of mass such that it tends to resist change
of velocity.

Inertia force. The force required to change velocity 0 to v or v to 0
depends on the mass, the velocity and the distance L.

v 2L
avgt:ZtOI‘t=—V—

) where L = v

— —— | — L —
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INERTIA

Inertia or kinetic energy. The work energy required to accelerate a
mass from 0 to v over a distance is:

KE =FL

2

w 1bf V'z ft

)

32 2 f’c2 sec
sec

Inertia or velocity pressure. The force per unit area or pressure
produced by a fluid changing in velocity from 0 to v depends on the
density and the velocity.

&) Gl

F
ze (5
< 1bm)< 2 ft2>
_lﬂ_vz_ipfta V sec?
“2\gl)Y T2, , lbmit
"% 1bf sec?
2
w <XV_B£ 2t
__1_ v v2 1\ ft3 sec?
2 T '
g 2 (32.2—f—t—;)
sec

Velocity head. The inertia pressure produced by a fluid in being brought
to rest may be equated to the pressure produced by a column of fluid of
density p under gravity action.

) 365 -

v secC

A
8, (32. g At 2)
secC

N
<
N
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INERTIA FORCE

This head produced depends only on the velocify and gravity. It could

be termed an inertia head.

INERTIA FORCE. This is the force F required to accelerate a mass m

from 0 to v over a distance L during time t.

deceleration force or drag.

_m v
T8¢ (2L
v
_1/m)\v® KE
“2\g./ L L
_1{w\v’ KE
“2\g/L T L

KE = FL

|
N
o
8
Se—
<,
{ ———

-

l(m> 2 1<w) 2
- 1)V ="}V
2 \gc 2\g

It may also be defined as a

JOULE. A joule is a metric energy unit having aspects defining heat,

work and energy.
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JOULE

Conversion factors. (The symbol J,, will be used to define all forms
involving joule or metric units.)

7o 1joule> - [ joule _ <1 Nm
m = Nm / amp volt sec/ amp volt sec

i ' joul
| = (j —loule 1 = (1055 1oule
watt sec Btu

Joule as a heat unit. The metric system defines the numerical value of
Jm as 1 compared to a numerical value of J in the engineering system
of 778 (see Mechanical Equivalent of Heat).

Nm £t 1bf
Im = (1 joule) = <778 Btu )
Tm = 1 oule = O 8£Zi§é (Ref. 33 14)
1.3558179%?3§% . SRt S

Joule as a work unit. A joule is the work of 1 newton N acting through
a distance of 1 meter m.

(1 joule) = 1 Nm

Joule as an electrical unit. A joule is used to define electrical units such
that one joule of energy is required for the electrical work of moving

one coulomb (= volt sec) of charge through a potential difference of
1 volt.

1 joule = 1 coulomb sec

il

1 amp volt sec

Joule per sec as a watt. The watt is a joule per sec (23, p. 19).

| watt = 122%e
secC

The following conversion factors are applicable.

3 lwat‘c sec\ 1 watt
B joule - amp volt
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KINETIC ENERGY

Btu Btu
1= (3413 - hr) - (3.413 — hr)
sec
3600 hr watt sec
1 = = {1053 ————
3,413 —S0 Btu
) watt hr
Btu ft 1bf ft 1bf .
b= (3' 413 ot hr) (778 Btu ) = (3660 watt hr)

KINETIC ENERGY. The kinetic energy of a mass moving at a final

velocity v is obtained as the work equal force times distance to
uniformly accelerate the mass.

Proof:
KE=W=FL
) (m)L
Ec
m (v -0 | v
= g, : L where L = Vavgt = (E) t
ort= 2 ’E
v
_m vL
8¢ (2L
v
f :
1 fm\ 2 (m 1bm) (v —s;c>
* % 1bf sec?
2
) ) - (w 1bf) <v -—ft—>
=3 (—g‘z) v’ ft 1bf = —F o
: 2 (32. 2 ;e—gf)
where
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KNUDSEN NUMBER'

Alternate proof.

KE =W = FL

KNUDSEN NUMBER. In rarefied-gas dynamics, flow patterns are deter-
mined primarily by the Knudsen Number (4, p. 199; 24, p. 83).

Knudsen Number
Kn = . .
Dimensionless

(Ra’c1o Mean Free Path Distance of Molecular)
(Length Dimension of System)

_ A A ft

“\L 1, ft
LEWIS NUMBER. This dimensionless parameter involving diffusion
is encountered in mass transfer. It is also known as the Semenov

Number. It is a redundant dimensionless number in that it is equal to
the basic number ratio Prandtl/Schmidt.

(Lewi s Nu.tnber)
Le =

Dimensionless
(Z5em)
_(Pr) k

“(Sc) T ( Mm >
PPm
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MACH NUMBER

< 1bm>(c Btu <D ﬁf_)
PCpDm \P 3 /\"P Tbm F/\"™M hr

— =
(k Btu ft )

ft2 hr F

Dm _ Dm (Mass Diffusivity)

k \ = a ~ (Thermal Diffusivity)
Pcp

LIMITATIONS, See Sufficiency.

MACH NUMBER. This dimensionless number refers an actual velocity
to a base or reference velocity usually a sound velocity.

<Mach Number)
Ma ={__. .
Dimensionless

ft

where v frequently equals sound or acoustic velocity, ft/sec.

= J8ckRT

=1 [8ck (——-—— for a perfect gas

_, [EE
p
C

k = specific heat ratio, =L
CV

Referred to the last equation for vg it appears that Mach Number is
related to a pressure-density ratio, perhaps an elasticity aspect.
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MACH NUMBER

Ma as a criteria. For compressible fluid flow Mach number represents
a criteria between flow regimes. Below Mach one the flow is subsonic.
Near and at Mach one equal to the velocity of sound the flow is transonic.
Above Mach one the flow is supersonic. Above Mach five the flow is
hypersonic.

Ma in dimensional analysis. In dimensional analysis where a property
depends on two velocities vy and v,:

Properties =f (....vy, vo....)

if the result is an expression of dimensionless numbers a (vi/vp) term
will always be obtained where v, will be the velocity of sound if v, in
the original expression is the velocity of sound. However, v, may be
some other velocity such as ship or object velocity. In that case (vyi/vy)
is a velocity ratio. This will be termed Mach number. Thus in
dimensional analysis Mach number is a ratio of velocities in which the
reference velocity may or may not be the velocity of sound depending

on the nature of the problem.

Ma in terms Eu.

2
v

2
Ma) = T RT

n

( 1bm>< 2 £t
1 ngz P J\V sec?

gc P\ ~ k(Pgc) ~ 1bf lbm ft
k<V2p> ' k\P &2 32- 2 Tof sec?

_ 1
T k(Eu)

MAGNETIC PRANDTL NUMBER. This fluid property resembling the
Prandtl Number has been mentioned in the electromagnetic literature.

(Magnetic Prandtl Nu.rnber)
Pm = . .
Dimensionless
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MAGNETIC REYNOLDS NUMBER

(Rm) (Magnetic Reynolds Number)
(Re) ~ (Reynolds Number)

(}.LEO'LV)
AN Im /o <”p°'p‘fgc>
- (evL) - Jmep
HfEc/

( 1bf )( amp > 1bf sec) (32 , lbm ft
_ PP amp?/ \© volt £t/ \PMf T 2 "7 1bf sec?

: ft 1bf b
(0.738 t b )(p fg’)

amp volt sec

MAGNETIC REYNOLDS NUMBER, This dimensionless number expresses
the properties of an electromagnetic field.

Magnetic Reynolds Number
Rm = . .
Dimensionless

()

= T

1bf amp ft
- ft)lv
B (“p amE‘> (U volt ft>(L t) (V sec)

<0.738 ft Ibf )

amp volt sec

where

Hp = magnetic permeability, 'lbf/arnp.2
¢ = electric conductivity, amp/volt ft
L = length, ft

v = velocity, ft/sec

Jm = conversion factor = 0. 738 ft 1bf/joule = 0. 738 ft1bf/amp volt sec

ft 1bf Btu )(1 hr)

where 1 watt = 1 amp volt.
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MAGNETIC REYNOLDS NUMBER

Rm in terms of Re. Magnetic Reynolds Number Rm is also expres sible

in terms of Reynolds Number and two other dimensionless numbers
(Ref. 24, p. 121).

Rm

i

-1
(Re) (Em 3)(Ha)
1bf amp ft >
ft —
(HP amp2> (U volt ft>(L )< sec
- 1 ft 1bf
L M amp volt sec
’( 1bf sec)( 1bm ft)
B2 Ec 1bf sec?
- 1bm ft
L <p ft3 ><V sec>(L ft)
8 2
( 1bm><v2 ft >
P 73 sec?
1bf 2 amp? 1bm ft-
L(HP amp2> (H ft2 )(gc 1bf secz)
[ 2 1bf’ amp 2 amp’ 2 .2
p
<p'P amp“) <U volt ft)(H ft >(L i)

1bf sec T ft 1bf :
L BE T g2 ™M amp volt sec

where

Re = Reynolds Number = <H—L>
M8

ppH g
Em3 = Electromagnetic Number 3 = (—P———C—)

AT 2011}
Ha = Hartmann Number = <—P-—————'>
ped m

Magnetic Re in terms of current density.

1bf amp ft
R = <I'LP amp’) <°- volt ft)(L ft)(v seg)
(J ft 1bf
M amp volt sec

ol
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Ibf

1bm

sec

MAGNETOHYDRODYNAMICS

H (magnetic field strength, amp/ft) = H amp

(E) . _(electric field strength, volt/ft) E volt
— ]} = ratio -

L = leng’th, ft

v = velocity, ft/sec

p = mass density, lbrn/f’c3

kp = magnetic permeability, 1bf/amp

Jm = conversion constant factor,work to joule electrical units
ft 1bf ft 1bf
=0.738 - = 0.738 t1b
joule amp volt sec
g. = conversion constant factor = 32.2 Il—g)f—rnsi—:,

a 2 2, b c e
F 1bf = C(cr amp > (e amp” sec ) (E volt) (L ft)d< _ft__)
sec

volt ft 1bf ft? H amp
1bm \ 1bf \5 ft 1bf h Ibm ft \*
<p F) (HP ampz) (Jm amp volt sec> <gc m>
O0=-a+c-h h=c¢c-a
0=a+2b-c-2g-h

a+2b-c-2g-c+a

=2a+2b - 2c - 2g g=a+b-c
l1=-b+g+h-1i

=-b+a+b-c+c-a-i i=-1
O=f+i=1f-1 f=1
0=2b-e-h-2i

=2b-e-c+a+?2 e=2b+a-c+2
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MAGNETOHYDRODYNAMICS

- (25 (%)
- JmtE/\c
2
()@
T AT R tE/\L?
1bf 2.2 (Iam
O v
= ft 1bf volt
(0' 738 volt amp sec>('c sec) (E ft )

where
E = electric field intensity, volt/ft

o = electric conductivity, amp/volt ft

(Ilg) = electric current density, arnp/f‘c2

volt amp
<E ft >(U volt ft)

MAGNETOHYDRODYNAMIC DOMAIN. ARDA analysis gives for MHD

Il

Eu = fcn(Rm,Em 1,Em 2) where Rm = fcn {Re, Em,Ha)

Derivation of MHD domain. For the MHD domain occurring with the
motion of an electrically conducting fluid in an electromagnetic field
(24, p. 119).

E
F =fcn (O',G,E- L,v, P-Hpvjmvgc)

where
F = force on fluid, gas or liquid,‘ 1bf

electrical permittivity, amp? sec?/1bf ft?

m
fl

electrical conductivity, amp/volt ft

q
1]
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MAGNETOHYDRODYNAMICS

[
+
o
I

-a-2b+d+e-3f+h+1i

—-a-2b+d+2b+a-c-2-3+c-a-~-1

-a+d -2 d=2a+ 2

C
F Ibf < C(o-)a(e )b<_11f_3_i> (L)a + Z(V)Zb +a-c¢+ Z(p)l

b a(gc)—l

< Fgc ) _(Hvav>a( 2,b (T mE ©
pL2vY “\ Ty Hp€ Y ! \upHvY

Eu = (Rm)*(Em 1)° (Em 2)°

(T G A

This equation applies also to the electromagnetic domain of Eu = 1.
This is transformable into an alternate form.

Eu = (Re)  (Em 3) (Ha) (Em 2) (Em 3)

where

Eu = Euler Number dimensionless

1§

Rm = Magnetic Reynolds Number, dimensionless

Re = Reynolds Number = <&->

KfEc
b H'g
Em 3 = Electromagnetic Number 3 = (—va—zc>

L 2eH’ I
Ha = Hartmann Number = (—L
MfEcTm

1bf sec

pg = viscosity, 2
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MECHANICAL EQUIVALENT

MASS DIFFUSIVITY. See under Diffusivity.

MECHANICAL EQUIVALENT OF HEAT. This is a conversion factor
designated as J. An exact numerical value has not been adopted in the
engineering system of units, primarily because of the existence of
several definitions of Btu such as the International steam table IT Btu,
the thermochemical Btu, etc. The numerical value 778 is customarily
used as equivalent to the approximate numerical value obtained by the
conversion factors indicated below (Ref. 33).

Ioule
(1055 04 1T Btu )

J =
joule
( 3558179 it 1bf>
ft 1bf
= (778 Btu )
Newton m joule
54.350264
7= (1 joule )(10 4.350264488888 thermochemical Btu)
- Newton m
(4.4482216152605 Tof )(0.3048 ft>

ft 1bf
(178 S22

The numerical values are given to many places in the preceding to
emphasize that while the numerical value is not as exact as 1.00
would be,it is determinable to considerable accuracy.

Thermodynamically J is not reversible, in that mechanical work in

ft 1bf can be fully transformed into heat but heat cannot be fully trans-
formed into mechanical energy. For this reason J does not usually
enter into dimensional analysis. On the other hand the acceleration
law as expressed in g. is reversible so that g does enter into dimen-
sional analysis particularly in fluid flow problems.

The symbol J,, will be used for the metric conversion factor (33, p. 14).
See Joule.

T ft 1bf

- jou Joule
1.3558179 t 1bf
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METRIC SYSTEM

METRIC SYSTEM. The Systeme International or SI metric system
adopted by the U. S. Bureau of Standards 1964 as a preferred system,
is outlined as follows, in comparison to the U.S. engineering system.
The SI metric system is also used by other agencies such as the NASA
Marshall Space Flight Center (Ref. 33) which suggests that if other
units are used in reports, the equivalent SI units shall follow in
parenthesis.

Metric prefix conversion factors. Those in typical use are:

(106 meters\ _ (106 m) (10 decimeters) B (lO dm
megameter/ =~ \Mm meter N m

(1000 meters) _ (103 m) <100 centimeters) _ (100 cm)
\ kilometer "\ km meter - m

<1ooo millimeters> 1000 mm)

meter - m

(106 microseconds) ~
second -

B sec
m

: )

Metric system advantages. The SI metric system possesses advantages

in that the numerical values of g. and J are unity rather than larger
numerals as in the equivalent engineering system. Thus

( sec
<109 nanoseconds) B sec
/a m

second

_ kgm m B Ibm ft
8c = (1 newton sec2> Versus c = (32'2 1bf sec?
S wt ft 1bf
J = (1 M> Versus J :(778 t1b )

joule Btu

Also the SI metric system uses multiples of ten rather than varied
multipliers. - For example:

(10 mm) Versus (12 9—)
cm ft
(1000 m) Versus (5280 £t >
m ‘ mile
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METRIC SYSTEM

Thus, some calculations will be numerically simpler in the SI metric
system. No simplification is achieved in equations using the accelera-
tion of gravity. Compare:

ft
g = <9.81 - > Versus (32.2 2)

sec2 secC

Equations such as V, = (escape velocity) = V2g R involve a similar
amount of calculation in either system.

Metric disadvantage of newton as a weight or force unit. The SI metric
system possesses some disadvantages in specifying the newton as the
force or weight unit as compared to the 1bf downward (equal to lbweight)
in the engineering system. The SI metric system recognizes the newton
as the only force unit and does not use kgf as a force unit. In ordinary
experience 1 1bf is measured as the gravity force on 1 1bm on the surface
of the earth. Ordinarily the newton is not actually measured by accele-
rating 1 kg at a rate of 1 meter per sec in accordance with its definition.
Thus, it is more difficult to recognize that 1 kg of mass exerts a force
downward of 9,81 newtons weight.

Thus, the SI system is disadvantageous as compared to the engineering
system in specifying the weight of a mass, in the decimal numbers are

required as compared to the unity relation between lbweight and lbmass;
that is

1 kg (mass) weighs 9.81 newtons force downward
1 1bm weighs 1 1bf downward = 1 lbweight

Thus, a conversion factor, not a multiple of 10, is required in the SI
metric system in any problem involving weights.

The conversion factors to newtons from engineering units are:

1 _(4 .45 newton)
- 1bf

_{_32.21bm ft _\ _(7.83 lbm ft
c "~ \4.45 newton sec?/ ~ \newton sec?
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Metric system weight.

in the table.

Table

METRIC SYSTEM

Force and weight relations may be summarized

Force and Weight in Metric and Engineering System

Metric SI System Engineering
ft
Force (m kgm) (a m2> (m lbm) (a 2)
to accelerate sec c
F newtons = F 1bf =
m 1 kgm m Ibm ft
F ={—)a | — 32.2 5
gc newton sec 1bf sec
igh ft
Weight (mkgm) (9.81 m2> (m 1bm) (32. 2 2>
on surface sec sec
w newtons = w 1bf =
of earth ! kgm m 322 1bm ft
(m) newton sec? "7 1bf sec?
w=|—])g
gc
Summarized 1 kgm (= 2.21 lbm) exerts 1 1bm exerts

force and

mass relation-
ships on surface
of earth

9.81 newtons force downward

| or 1 kg weighs 9.81 newtons

1 1bf (= 4.45 newtons)
downward, or
1 1bm weighs 1 1bf

As an example, for the Saturn I space vehicle rocket-booster, the

information shown in Table

engineering units.

Table

would appear simpler expressed in

Saturn I Launch Vehicle

Mass of Vehicle

454,000 kg

1,000, 000 1bm

Liftoff Weight

4,450, 000 newtons
= 4,45 meganewtons

1,000, 000 lbw
= 1,000,000 1bf

= 4,45 MN
Thrust 6.70 MN 1,500, 000 1bf
Available 2.25 MN 500, 000 1bf
Acceleration
Force
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METRIC SYSTEM

Metric system potential energy. As another example in which
calculation in the SI metric system appears more complex is in the
work required to raise a mass a height.

Example: Calculate the work required to raise 100 1bw (45.4 kg) a
height of 20 ft (6.10 m).

H

Engineering Units: PE = wh = (100 1b£f)(20 ft) = 2,000 ft 1bf Ans.

()

C

Metric Units;: PE = wh

(9.81 mz)
secC

\ kg m )

newton sec?

(45.4 kg)(6.10 m) (

2720 newton meters Ans.

Check:

ft 1bf
(2720 newton meters) = (2720 n]rn)(1 EY) Nm) = 2000 ft 1bf

newton meter

ft 1bf
table of conversion factors following.

The conversion factor (1 .36 )has been taken from the

Metric versus engineering units. The scientist (physicist) uses the
metric system whereas the practicing engineer uses the engineering
system. As with languages such as English and German, the medium
of communication that is most familiar is used. Although one system
may be preferred by an individual, it would appear desirable to under-
stand and work in either system. Important conversion factors are
summarized in the following section.
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METRIC SYSTEM

Conversion factors metric to English. Factors in common use in heat and mechanics

are given in the following table.

Table Metric and Engineering Unit Conversion Factors
Physical Preferred Other Metric Units Engineering Conversion
Property Metric of Conversion Units Factors
SI Unit Factor
length m = meters (10 rmcrons) ft (3 .28 ft
meter meter
(100 angstroms) (1.609 km)
meter mile
(1000 mm>
(100 )
m
volume m? (1000 llters) (3 79 m?
1000 gal
1000 cc 0.134 £t
hter "al
velocity meter 0 meter ft P3 58 it 1
sec sec sec ’ sec
velocity of light (meter
L sec |
f
9.836 x 10° —— 0.447 m |
sec sec
velocity of light (miles)
hr
mass kg = kilograms (1000 grams) 1bm (2.21 lbm>
k kgm
= kgm g g
(32. 2 lbm
slugmass
(mass kg lbm
time sec sec
time s = seconds sec

@oséc)
min
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METRIC SYSTEM

Table Metric and Engineering Unit Conversion Factors (Cont.)
Physical Preferred Other Metric Units Engineering Conversion
Property Metric of Conversion Units Factors
SI Unit Factor
temp K = Kelvin (K =C + 273) F (F abs = R
= F + 460)
force N = newton 105 d ne) 1bf (4.45 newton)
newton 1bf
(9.81 newton) _ [(4.45 N
kg force - Ibf
power W = watt (1000 watts) hp for (mechanical 746 watt
work) hp
watt for elec power ft 1bf
0.738
___sec Also see
. watt heat watt
time
heat = joule (4187 joule) Btu (1055 joule)
k cal Btu
107 erg)
joule
(heat) oule 1 joule heat rate 17.6 watt
time sec sec Btu
watt min
Btu
<3413 hr >
kw
heat joul i
( ea > joule b 324 joule
mass kgm kg
Btu
1b
heat) oule heat flux
area m?2
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METRIC SYSTEM

Table Metric and Engineering Unit Conversion Factors (Cont.)
Physical Preferred Other Metric Units | Engineering Conversion
Property Metric of Conversion Units Factors
SI Unit Factor
heat. joule 1 joule specific heat 4184 joule
mass time kgm K kg K kg C
1 k cal B’cu
kg C Ibm F
heat joule watt heat flux rate 316 watt
area time m? sec m? m?
1 joule ) Btu
m? sec ft?2 hr
Btu
518.
8.000 2 hr
Btu
V=
in? sec
}}eat __joule conductivity 519 joule
area time temp /| m sec K m sec K
Btu in.
ft? sec F
acceleration m2 ft 0.3048
sec sec ___ sec
T
sec
i kgf 1bf
pressure kllonezwton 9.81 __gi_ pei = —3 <6 895 kN
m _ in!
t
KN 1 new2on psi
= 7 m
m
atm press 1013 _1_<_§_ 101, 325 newtonzs psi = 'lbf <14.7 Esx)
ter in: atm
atm atm
d
1,013,246 (760 t°n>
atm
atm
<760 ml_H_g) Mﬂg)
atm atm
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METRIC SYSTEM

Table Metric and Engineering Unit Conversion Factors (Cont.)
Physical Preferred Other Metric Units Engineering Conversion
Property Metric of Conversion Units Factors
SI Unit Factor
viscosity newton sec 10 poise 1bf sec
on se. 47.9 ——=—
meter? I newton sec ft
meter? (newton sec)
meter?
work newton meter 1 newton meter force x distance (l. 36 newton meter )
= Nm joule ft 1bf
7
10_ _dyne Cm) accurately
joule 1.3558179
, dype cm
erg
mass kgm kgm kgm
. 3 1008 3 16.02 3
density m m m
| gm mass (1bm
cm? ) ft3
g | ——<gm kgm m g. c sio lbm ft
c n 5 o conversion 5 >
newton sec (9'81 kgf secz) factor 32 1bf sec?
i f
g 9.81 m2 gravity . 32.2 ‘c2
sec acceleration sec
accurately
9.80665
J newton m mech equiv 778 ft 1bf
joule heat Btu
1 1 . 3 . i 3
mole volume 22 .4 meter at 22.4 liters at OC 358 ft at 32 F and
mole mole mole

OC and 1 atm
with molecular
weight in kg

mole
known as kgm
mole

and 1 atm with
molecular weight
. grams mass
in

mole
known as gm
mole

14.7 psia with
molecular weight
1bm
mole
1bm mole

in known as
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MODULUS OF ELASTICITY

Table Metric and Engineering Unit Conversion Factors (Cont.)
Physical Preferred Other Metric Units | Engineering Conversion
Property Metric of Conversion Units Factors
SI Unit Factor
Universal (wm) R

Gas Constant

mole K

(8314 joule)

(1.986 cal)
mole K

(8314 newton m)
mole K

with molecular

(82. 1 atm cms)
mole K

with molecular

(1545 ft lbf)
mole R

with molecular

1bm
mole

weight

weight kgm weight gr mass
mole mole

MODEL THEORY. See Similarity

MODULUS OF ELASTICITY. Murphy (28, p. 144) defines the resistance of any
substance to compressibility as the change in pressure divided by an index to the

corresponding change in size. Thus for solids under axial loading the measure
of the change in size is (AL/L).

For solids
E = Young's modulus of elasticity
AP
AL
L

For gases and liquids

AV
The measure of the change in size is (——)

E = bulk modulus of elasticity

B

In dimensional analysis problems E appears in the Cauchy Number.
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NEWTON FORCE

NEWTON FORCE. The newton N is a metric force unit that can be
expressed in mass units or in heat-work units.

Conversion factors.

- kgm m Expresses N in
c = ' N sec? : mass units
T = Nm _ Nm
m ~ ° joule ~ ~ amp volt sec
N
1 =4.4482216152605 Tof (Ref. 33, p. 9)
ft 1bf
J =778 Btu
Nm
1= 1.3558179 1o (Ref. 33, p. 14)

Newton in acceleration constant. The newton N is a force unit expressible
in terms of mass by the newton law.

(m kgmass)

m
( kgmass m >(a sec2)

Ec newton sec?

where g. =2 conversion constant or factor with numerical and units value.

- kgm m Numerical value selected
~ " N sec? as 1 in metric system

Newtons expressed in joules. A joule is a metric energy unit defined
as the work of 1 newton N acting through a distance of 1 meter m

(1 joule) = 1 Nm

I N =1 joule
- m
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NEWTON FORCE

Newton force expressed in mass units. The newton law is written in the
preceding form as a unit-consistent equation in which the units on both
sides of the equation must be the same which is the practice followed in
the ARDA dimensional analysis procedure of this text. This equation
reduces to the units of newtons on both sides of the equation which indi-
cates that a newton is the fundamental force unit. It is expressible in
other terms as is usually done by application of the F = ma equation but
if force is a fundamental property it is physically not mass, length or
time and any expression in such terms of mass, length or time is a
mathematical procedure rather than a physical concept. Simply stated
force is a "push' and is not a quantity of matter, length or time.

Newton as a derived force unit. If the newton is treated as a derived unit
expressible in terms of mass, length and time units which can be done

only by the mathematical law F = ma, the g, conversion factor is omitted
to give:

F newtons = (m kgmass) (a ft 2)

sec
L meter
N = (m kg)<T2 sec2)
= MLT™? kg m sec-!
numerical units

value description

The use of the newton thus defined as a derived mathematical force unit
having the numerical value and units of one kg m sec™ is the heart of the
metric system of units. From a dimensional analysis standpoint it is
mathematically excellent but to treat a force not fundamentally as a push
but in terms of a qunatity of matter renders the interpretation of physical
phenomena in dimensional analysis difficult. To avoid this and thus
simplify concepts the ARDA dimensional analysis procedure is to consider
force as fundamental. If so force must be clearly designated as such
which requires some such notation as 1bf (to distinguish it from lbm).

If this notation is adopted there is little advantage in selecting some
designation other than 1bf simply because one 1bf has a very readily
understood physical concept as the force exerted by one lbm where the
acceleration field has a value of 32.2 ft/sec?. On the surface of the earth
where numerical value of g is essentially equal to the numerical value of

gc. this Ibforce is the downward push or lbweight exerted by 1 lbmass of
matter,
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NEWTON LAW

NEWTON LAW. This is a universally true observed experimental law
not requiring proof.

F = Kma

The constant may be written with the g . symbol to give

- (2)

If the ARDA principle is accepted that every equation must be unit
consistent so that the units on the left-hand side of the equation must
equal the units on the right-hand side of the equation g, must have numer-
ical and dimensional value to make this true.

(m lbm) ( ft )
(g 1bm ft) 2 sec?

C 1bf sec?

Flbm =

In the engineering system g_ has the numerical value of 32.2. In the
metric system the sizes of the other units are selected so that g_ has a
numerical value of unity.

This law can be written as a dimensionless number.

(m 1bm) (a ft 2)
1 = (ma ) _ sec
F g, | (F 1bf) (gc 1blbf ft 2)

m secC

This dimensionless number may be considered to be part of every equation
expressing physical phenomena involving mass acceleration. however, it
need not be included as it is always true because the numerical value of g,

is a constant and thus is not a variable (like g ft/sec? for example) that
can affect the results.

Newtons law in system of units. Newtons law is

F =Cma

If this equation is considered to be a relation between the properties force,
mass and acceleration, (length per time?) where the properties have no
fixed size the value of C or g. must necessarily be a numerical unity.
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. NUCLEATION DOMAIN
F = mLt?

This is done in a three unit system where F is defined in terms of mlit
or m in terms of FLt,

However if unit values of properties are established, the symbol g. has
numerical and units value to make a unit consistent equation. The
numerical value of g need not be unity.

F lbm = m lbm a ft
32 .2 1bm ft sec?
"7 1bf sec?

NOTATION. In previous dimensional analysis procedures the symbol
M represents the property of the entire amount of mass. In the ARDA
method, m will be used to represent both the entire amount of mass
m lbm and the numerical value m in m lbm. For simplicity the engi-
neering system of units will be used with the different properties

m lbm (1b mass) and F 1bf (1b force) clearly distinguished.

NUCLEATION DOMAIN, ARDA analysis gives the form

N 3
(—i—)%— = fen (Ja)(Re)(Fr)(Eu)(We)(Nu)y, (—Ii> (Nu); (Re)1, (Pr)q,

R D

ARDA derivation of nucleation domain. The work of Steele (12, p. 30)
is of interest in defining the nucleation rate (N/A) at which bubbles form
on a surface in boiling heat transfer.

: a b e
N 1 lbm ft c d Btu
(A sec ft2> =C (p ft3 ) (V sec) (D ft) (AT Fabs) (hfg 1bm)

1bm ft >f 1bf sec)g Kk Btu >h ft k
gc 1bf sec? g ft2 hr ft Fabs g sec?
(P y_o_g)m (c Btu )n - Ibf p<9_ Btu >r LS

ft? P 1bm Fabs ft A ft?hr ( )

Btu v sec\ " X y 1 \”
A S — N
<hc hr ft? Fabs) <3600 hr > (e ) (¥ m £t) ( sec)

where the usual notation is supplemented by:

e = height of surface roughness, ft

Y, = amplitude of vibration of fluid, ft
N = frequency, 1l/sec

hfg = enthalpy of evaporation, Btu/lbm
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secC

1bm

Ibt

Btu

Fabs

|1}

1}

a-e+g+m+p-w+ e a

]

f

NUCLEATION DOMAIN

-3a+b+rc+f-2g-h+k-2m-p-2r+s-2v+x+y

(-3w+3g +3m + 3p)+ (1 - g -2m - 2p - 2k + W+ z) +¢C

+(g+ma+p)-2g+(+r+v+w)+k-2m-p=-2r+s

-2v4+ X+ Yy

W-X~-Z-p+k+r+v-s-y+g=c

b -2f+g-2k+w-2z

b+ (-2g -2m -2p)+ g -2k+w -2 b

il

1-g-2m-2p

-2k +w+ 2z

a-e+f-n

wW-g-m-p

f+rg+m+0p f=g+m+p

e+h+n+r+v

e-Tr-V-W4+n+r+v n=w - e
ch-r-v-w h=-r-v-w
d-h-n-v

d+r+v+w-w+e-v d=-r -e

.>=C|:(p)w-g—m-p(v)1—g—Zm-Zp—2k+w+z

D—3+W—x-z-p+k+r+v-s—y+g(AT)—r-

(heg) (g c)®

v e

M P Y T Ve @)
P

(T)P (qﬁL)S(hcf’(séoo>w<e>x(Ym>V(N)z]
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NUCLEATION RATE

: 2 p\"
N _Qi hfg Cfrrgc g(g_]_3_>k Pg\™/Tegc \P AD (_I_J)S
<K> v - c CPAT pvD v? pv? v2pD k AT D
hcD\V (3600 CppvD\V e X(lm>y(1\j.12)z
k k (D) D v

S
= (Ja)© (Re)b—g(Fr)b_k (Eu) (We)g) (Nu),; (%) (Nu)

v
L

(Re) " (Pr) ™ (%)x (Xgn)y (Sh)*

where (Pe)zj = (Re)g(Pr)I\j’.

The less frequently appearing terms are:

<X-m> = vibration number
D¢

Sh = (E% = Strouhal Number
v

(Rey)) = <11—)-g9—> = Reynolds Number flowing liquid
RfEc

(.II):LC-) = shape factor

Omitting the less frequent terms:

(_13%: C(72)° (Re) (Fr). (Ew)™ (We)P (Nu)” () (Pr)w(%>

NUCLEATION RATE. The nucleation rate (N/A) (12, p. 30) used in the
Nucleation Domain, is the number of bubbles formed per sec per sq ft
of surface, in boiling heat transfer. Its units are therefore,

(5) =
A/ sec ft?

It would be possible to use a single symbol for this quantity but to avoid

proliferation of symbols and to use a symbol more easily recognized the
N is used to signify a number, the dot a rate per sec in accordance to an
increasingly accepted modern usage and A represents area.
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NUSSELT NUMBER

NUSSELT NUMBER. This dimensionless parameter introduces
the effect of surface conductance in heat transfer.

Nu Units
Dilnensionle SS
( )
k

Btu
N (h hr ft2 F) (D £t)
u = K Btu ft )
hr ft2 F

Redundant Forms

(Nus selt Numbe r)
Nu =

Nu = (St)(Pe) = (St)(Pr)(Re)

Nusselt Number as energy ratio. The Nusselt and Stanton Numbers can
be interpreted as similar energy ratios by multiplying numerator and

denominator by AT (4, p. 201). This is dimensionally valid, although
the AT are different.

h hD
St =3%00 pCp V Nu = =
_ hAT hAT
" (pC,AT) 3600V - (kAT)
'p ——
D
_ (total heat transfer) B (total heat transfer)
~ (convective heat transfer) ~ (conductive heat transfer)

Nu as a heat ratio. For fluid flowing in a tube:

Nu = (overall heat transfer fluid to wall)
~ (conductance through boundary layer)

gh mhrB;t% F) (A ft? wall surface)(AT F fluid temperature drop)

- < Btu ft >(A 2 11)< AT F fluid to wall )
hr ft2 F wa 1, ft boundary layer

hL (AT temperature drop fluid)
k (AT fluid to wall)
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ORIFICE FLOW

In practice D is used instead of L.

Also,

- Btu Q

Q hr = hAAT or h = AAT
Thus,

Btu
. — ) (L ft
hL oL (0 22) (r
k kAAT < B%%f—%) (A ft)(AT fluid temperature drop)

Nu from dimensional analysis. Nusselt Number is a measure of heat
transfer properties and depends on the heat transfer coefficient h,which
is related to the boundary layer thickness L (related to the diameter D
if flow is in a tube) and the thermal conductivity k across the boundary
layer. It is independent of main stream velocity.

a C
Nu = C(h _Btu ) (L £t)° (k Btu ft )

hr ft? F hr ft2 F
¥ 0=-a-c
Btu 0=a+c cC = -a
hr 0=-a-c
ft 0=-22a+b -c¢ b=2a+c=2a-a=a

Ch)* (L) (k)™

Z
c
I

I

he L] .
clze _hD
k k

where both C and a can be unity. Also D is usually used for L.

ORIFICE FLOW. Although related,it is possible to consider flow through
an orifice as produced by gravity and as produced by pressure.

Flow through orifice produced by gravity. By dimensional analysis, for
orifice of diameter D = L:

b
. £t a ft
V _ -
( sec) = C(D ft) (g sec2>
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ORIFICE FLOW

sec -1 =-2b b =

N

ft 3=a+b=2a+

|
o |~

5
V=C(Dit) (g)

-

. v v
= D2 gl/2 = L5/2g1/2

o Vi (av) _L‘v?__v_z__Fr
"D’ D°g L°g gL~

By the associative method, if flow is produced by gravity, Fr is involved.

R A i i va) v’
=70 TgL T gl®  gl® T gl?
' Vm
To determine scale factors v = T , etc.
1 5
v=Cg? L?

For constant g,the gravity flow is proportional to % power of L = D. As

discussed under Scale Factors the proportionality also applies to scale
factors, or
5

\'71 = (LI)E

5
V:AV:LV:Cg L2
1
2

VvV = ng L
1
Forconstant g the velocity v is proportional to % power of L,or v'= (L
Pg
(Fr) = C = —
pv

_c (2N (XY (X
P=C (gc:)V = C(Vg>v = C<Vg>CgL

Forconstant g and densities (%) P is proportional to L,or P' = (L").
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ORIFICE FLOW

For constant g and densities (%),F is proportional to L, or F' = (L')a.

A more formalized general treatment is given under Similarity Dimen-
sionless Number Criteria.

Flow through orifice produced by pressure. By dimensional analysis:

b d
. ftS 1bm\* (- 1bf> c( 1bm ft )
v sec c (p ft3> P ft2 (D ft)

E¢ 1bf sec?
1
sec -1 =-2d d—_-—z—
1bf 0=b-d=>b 1 b 1
—— - - - -2 ._2
b 4 1 1
1bm 0 =a+ =a+2 a:-—2
g 3=-3a-2b+c+d
=%—l+c+— c =2

1 1
(Y (DY (ge)? = CDy—5C

Nt

V= Cl(p)
By association, if flow is produced by a pressure,Eu is involved.

4
Pg.D .
1 =C(Eu)=C (—-;V—Q—-) Eu is in termsV where D = L,

. Pg.D*
2o c[=2
p
) Pg.
vV = CDY—=
N P

A general treatment is given under Similarity Dimensionless Number Criteria,
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OSCILLATING WING

OSCILLATING ELASTIC WING IN MOVING FLUID. Sedov (3, p. 60)

gives

b c e f
1 a 1bf 1bf d 1lbm ft
N—L\ - 1bf fy  bm 1bm
( sec) C(L it) (E ft2) (S ft2> (m 1bm) (p ft3 ) <V sec)

1bm ft \°
Ec Ibf sec?

where E and S are moduli of elasticity and shear.

1bf

Ibrm

secC

0=b+c-g b=g-c
O0=d+ e+ g e =-d-g
-1=-f - 2¢g f=1-2g

0=a-2b-2c-3e+f+g
=a-2g+2c-2c+3d+3g+1-2g+¢g

a=-3d -1

) d d-g 1-2
g€ °gmdyd 8y g(gc)g
d c

() - o(25)" (229 (2)

m d Fa\
(Sh) = C(Fa)® (ﬁ) (EE)

- -1
N =CL 3d

This result was also obtained as a special case under Fluids.
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PECLET NUMBER

PECLET NUMBER. This dimensionless number occurs in convection heat
transfer. It appears redundant in that it is a product of the more basic
dimensionless numbers Re and Pr.

Units
(Pe) = Peclet Number, dimensionless
3600 GppvD
- k

scc Btu 1bm ft
£3600 hr ) (Cp 1bm F)(p ft:r)(v sec>(D )

= Btu
(k hr ft F)

= (Re)(Pr)
_ (pvD)/3600 Cpufgc)
- (ufgc;)( k

Pe = (Re)(Pr)

Pe as ratio of heats. Some authors (28, p. 194) have defined Peclet
Number as a ratio of heat available to heat transfer. If so, Pe is a
more complex ratio. Consider fluid flowing in a tube of length L
having a boundary layer of thickness t.

t Boundary layer

7
Tg */ T2
Area A T¢ —-——— Perimeter P
V.
} STy,

- L T
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PECLET NUMBER

(heat given up by fluid in section L, Btu/sec)
(heat transfer across boundary layer in section L, Btu/sec)

(Pe)

Cpva (AT fluid)
PLk (AT fluid to wall)

Btu 1bm ft 7D? ) .
f AT f1
(CP lbm F)(p £t )(V sec)( 4 t) ( uid)

(D ft)(L ft)(k Btu ft )

_Btu ft \°
hr £t F/ V(AT fluid to wall)
>(t £t)

sec
(3600 he

AT temperature drop fluid
360
(CppVD> O( L length pipe )
k AT fluid to wall
t thickness boundary layer

Nu as Pe/Re. If Pe is a measure of heat transfer as a function of flow
turbulence Re, the ratio is of significance.

Pe
Nu = Re
(cpva (3600))
k 3 (Cp].kfgc 3600>
B k

(£re:)
HfBc
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PI THEOREM

Pi theorem details. The Buckingham pi theorem and procedure is
classical in dimensional analysis (30, p. 57). The pi procedure is
somewhat obscure and indirect and has retarded the free use of dimen-
sional analysis. For historical purposes it is given here and illustrated
by an example. (The modernized ARDA dimensional analysis procedure
used in the present text differs in several respects and the points of
difference are pointed out in parenthesis).

Pi theorem procedure.

1. Any physical problem where expressed in terms of n physical
quantities q such as 0 = f(q, q, 9, q4 ....) may be replaced by an
equation 0 = f(r, m, m;....) or C(r2){(nP)(n€).... where 7 represents a
dimensionless number.

2. Usual pi procedure is to express each physical quantity in terms
of three basic dimensions with a fourth defined by newtons law F = MA =
MLT % where A is acceleration LT and the constant before the M is taken
as unity. Two systems are in vogue, one is the technical system using
FLT with M = FL7' T?, the second is the absolute system with MLT and
F = MLT2, (In ARDA procedure an indefinite number of basic physical
properties is wused as may be convenient such as lbm, 1bf, ft, sec, Btu,
amp. Where the physical process involves a free acceleration or decel-
eration of mases as a result of action of forces the g_. conversion factor is
included. If this is a free conversion of work energy to heat energy
inclusive of the conversion factor, J may be required.)

3. For n physical quantities and usually a number k of basic
properties of k =3 for M, L and T or k = 4 if an additional basic elec-
trical property is included to take care of electrical properties, there
will be a number of 7 terms equal to (n - k). (In ARDA procedures the
result of the procedure determines the number of dimensionless numbers.)

4, Select a number k of the physical quantities, none dimensionless
and no two having the same basic dimensions, such that all of fundamental
basic dimensions are included in at least one of the physical quantities.

5. The first m term is expressed as the product of the chosen
quantities, each to an unknown exponent, and one other quantity to a known
power, usually taken as one.

6. Retain the quantities selected in (4) as repeating variables and
choose one of the remaining variables to establish the next m term. Repeat
this procedure for successive 7 terms.
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PI THEOREM

PI THEOREM. Use of the pi theorem or system limits the value of the
dimensional analysis attack and it is suggested that it is not needed.

The pi theorem postulates a definite number of basic dimensions, which
is an undesirable limitation.

The use of pi symbols to represent definite dimensionless numbers,
most of which have well-known names, such as Re, Pr, Nu, is also
an unnecessary duplication.

Where there are many variables, use of pi-theorem procedures results

in many pi values (dimensionless numbers) which are redundant in that
hbasic dimensionless numbers may occur in many pi values. It would seem
to be desirable that a basic dimensionless number should appear only once
in a given equation expressing phenomena of a given configuration.

In the many examples of dimensional analysis given in this book the pi
theorem is not used.

Buckingham pi theorem. The theorem states (29, 28. p. 36) that the
number of dimensionless and independent terms required to express a
relationship is equal to the number of quantities (physical properties
such as p, p, etc. involved minus the number of dimensions (lbm, ft.
etc.) in which those quantities may be measured. The term or 7 is
applied to a dimensionless number. For example if F = f(g,v,t,m,D,p,u)
there are eight physical properties. If these are expressed in terms of
L,m and t (lbf, 1bm and sec) there are three dimensions. There must
be 8 - 3 = 5 dimensionless properties involved.

In the ARDA procedures g. must be also included, or L = f(g,v,t,m,

D,p, i, gc) to give nine physical properties or relationships in terms of
L, m. F and t (Ibf, lbm, 1bf and sec) to give 9 - 4 = 5 dimensionless
properties.

A more detailed discussion of the formulation and use of the pi theorem
follows.
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PI THEOREM

7. For each m term solve for the unknown exponents by dimen-
sional analysis. (In ARDA procedure omit previous steps and solve
directly.)

8. There are a number of helpful relationships that are true for
both the pi and ARDA procedures,

a) If a quantity is dimensionless, it may be written as a «
q y Yy

term (or a dimensionless number) without going through the foregoing
procedure.

(b) If any two physical quantities have the same dimensions,
their ratio will be one of the 7 terms (or a dimensionless number). For
example (L/D) is dimensionless,

(c) Any m term may be replaced by any + or - power of that
term. Example n°™ may be replaced by 72, etc.

(d) Any 7w term may be multiplied by a numerical constant

because the C term preceding the m expression represents any unknown
numerical constant.

(e) Any 7w term may be expressed as a function of other 7 terms.
(This should be done with caution as some dimensionless numbers are
basic and if replaced may be redundant in that the same basic dimen-
sionless number may be used more than once.)

As an example consider the drag domain for drag F per
unit area A on a body.

F
f('A—,T, g, M,L,V,D,p)
- The physical quantities with their dimensions in FLT units are

(%) = drag per unit area = FL72
T = surface tension = FL

g = gravity = LT™?

hg = viscosity = FII? T

L = length = L

v = velocity = LT

D = diameter = L

p = density = ML = FIZ4 T?
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PI THEOREM

There are 8 physical quantities and 3 basic units thus (8 - 3) or 5
m-terms. Choosing diameter D, velocity v, and density p as the
repeating variables with unknown exponents the m, contains D, v,p and

F/A, m, contains D, v, p and u etc. The m terms are, therefore,
m = (La)(LbT—b)(FC L-4c TZC)(FL—Z)
™, = LA TPy e L T4y FLh
v = (La)(LbT_b)(FC L—4c TZC)(LT_Z)
m, = (La)( bT_b)(FC L-4c T—ZC)(FL_ZT)

w

1 . .
7= -5 written directly.

Evaluating exponents for w1

For ¥ 0=c+1 c = -1
For T 0=-b+2c=-b-2 h=-2
For L 0O=a+b-4c-2=a-2+4-2 a=0

F F
1 = D% v-2 p—1<—) = — = Euler Number Eu
A pv

(ARDA notation requires a g. in these dimensionless numbers)

Similarly after some work.

T2 :< 'I; ) = Weber Number-! = We™
pviD

D
w3 = (%) = Froude Number-! = Fr-'

T4 = (_pj'j'_D) = Reynolds Number- = Re

m5 = <%> = Shape Number

The result is

f(Eu, We, Fr, Re, %) =0
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PRANDTL NUMBER

ARDA Procedure. The same problem (including g¢) is
\a b c d e f
F 1bfy 1bf ft ) 1bf sec ft
(A ft? ) =C (T ft ) (g sec?, (Hf ft? ) (L ft) < sec ) (D ft)

lbm ft )g ( 1bm>h
Ec 1bf sec? P53

1bf l=a+c-g g=a+c-1

1bm 0=g+h h=-g¢g h=-a-c+1

sec 0=-2b+c-e-2¢g
=-2b+c-e-2a-2c+2 e =-2b-c-2a+2

ft -2 =-at+h-2ctd+c+f+g-3h
=-a+b-2c+d-2b-c-2a+2+f+a+c-14+3a+3c-3
ca-btc+d-24+f . f=-atb-c-d
(%):C(T)a(g)b(pf)C(L)d(v)_Zb_C_2a+2(D)_a+b_C_d

atc-1 -a-c+1

(gc) (p)
(FEe) —of 2y (2)] (1) (&)

Fu=1 (We, Fr, Re, %)

d

POISEUILLE EQUATION. See under Hydraulic Formulas.

POTENTIAL ENERGY. This energy in ft Ibf is possessed by a weight
w at an elevation H.

ft
g 2
PE = wlbf Hft = (wH)ft 1bf = (mH) —g& ft 1bf = (m lbmh ft) —-———fber; n
- lbm ft
Ec 1bf sec?

PRANDTL NUMBER. Prandtl number contains C
as the physical properties number.

pHE and k, thus is known

1 b
(Pr) = (Prandt Num er)

Dimensionless

Cprgc (3600)
= k
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PRESSURIZATION DOMAIN

Btu 1bf sec 1bm ft sec)
—_— —_— .2 ——=|{36
(Cp 1bm F><Hf £t )(32 1bf secz)< 00 hr

(Pr) =  Btu ft
hr ft2 F
_Sptm
Tk

c Btu 1bm>
P 1bm F/\"m ft hr

= . _Btu ftj
hr ft?2 F

Pr = Approximately 0.72 for air. This value may also be used

for fluc- and exhaust-gases resulting from combustion of
fuels with air. This value may also be used for diatomic-
gases such as N,, O,, H,, CO.

= Approximately 1.02 for low-pressure steam. For effect of
pressure and temperature see values for high pressure steam.

Approximately 0. 78 for ammonia.

Approximately
9 -

for gases. (Proof not given here.)

1

4
5c¢

C

P

PRESSURE. See Surface Tension Pressure. See Velocity Pressure,

PRESSURIZATION DOMAIN, ARDA analysis gives:

?g_ = fen(Pnl, Pn2 Pn3 Re Fr, Pr,Nu)
Derivation of pressurization domain. The pressurization of liquid propellant
tanks by a gas has been analyzed (Nein, 7 and 8) by Mower and Hanson (26)

whose analysis follows. The following specialized notation is employed in
addition to the usual notation,

T =(Tm - TL)= final gas temperature above liquid temperature, F

Tg =(T0 - TL): pressurant gas temperature above liquid
temperature

T = final mean gas temperature, F

T, = initial pressurant gas temperature. F
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PRESSURIZATION DOMAIN

T1, = liquid temperature, F
AV =(V2 - V1> = volume increase of tank during pressurization, ft3

Vo = initial pressurant gas velocity, ft/hr

sec p ft3

mo _ ftbf  \¥( lbm _ft B/ m 1bm >1< 1bf sec’
M 7" mole F abs Ec Tpr sec?) \Mmole/ \Mf  ¢?
s Btu K - Btu \! i\

sec ft F abs P 1bm F abs, \® sec?

h Btu n
C sec ft2 F abs

d e
(T °F) = C (TgF abs)(D 1) av #)° <vo ft ) ( 1bm> (t sec)t

mole 0=-g -1 g = -i
Fabs l=a-g-k-f-n
=a+i(+£ +n)-£ -n a=1-1
it O0=b+3c+d-3e+g+h-2j-k+m - 2n
=b+3c+(f -j-2m+2i+£2)+ (-32 + 3j)

-i+(G-1)-2j+{ +n)+m - 2n

=b+3c+f+j-m-4-n b=-3c-f-j+m
+4 +n
sec 0=-d+f-2h+j-%k-2m -n
=-d+ f+(-2j+21)+j+ (£ +n)
-2m - n d=f-j-2m+ 2i +14
lbm O=ze+h+i-1/¢
=e+ (j-i)+1i-1¢ e=14 -]
1bf 0=g -h+j
=-1-ha4+j h=j-1
Btu O=k+/f +n k=-f -n
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PRESSURIZATION DOMAIN

c-f-j+m+£L +n f-37-2m+ 2i+ 1

T = c(Tg)t ~ i)’ (AV)(v)

. - N
(o) J(t)f('rlx% R) (ge) 1(%> (1w ()7 (G (@)

)~ <im) (89 ) () (36) () (3

!

c(Pn 1) (Pn2)¢ (Pn3) (Re) (Fr) ™ (1) (Nw)®

1

(Pr)(Re)

where (St)-l o

il

;FT— - C(Pn 1) (Pn2)” (Pn 3)¢ (Re)d (Fr)° ®r)f (Nu)®
g

where exponents have been redesignated. The symbols Pn 1, Pn2,
Pn 3 designate pressurization numbers 1, 2,3;in that these dimension-
less numbers do not have formal names.

Nein and Thompson (8) using

m .
T =f(J, g¢, 3y + % Beger Cp R, To Tp, . V. A, b, Ty,

CpW, Pw LW’ P’ V]: V: Ao)

where
po=(pfgc)
m . 1b
(M) = molecular weight, olo

Ta = ambient temperature outside tank, F

- i ft?
V = liquid drain rate,
sec

Ag = inlet pipe area, ft?
V, = initial volume

w signifies wall
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PROPELLOR DOMAIN

Obtain (8, p. 10):

2 a b c
m
T ch(ﬁ) k Tg Tg peg rt
(’,‘I.—') =C 3, 3 4 T m
g Mf Ec T L =
M
m d m © m f
B Y e el
Hfgcrchwpwdw pe?ge? ré netgS T k

7

m 1

h m .
<Ta - T, M "
2
Tg AD“fgcr‘
Using equations (not given) for properties p, k and V for liquid oxygen or

nitrogen the preceding may be modified (8, p- 13, 7, p. 2) to what must
be viewed as a rather complex empirical relation.

T .
T—Q:f(To,r,V],prva,Lw, P: t, hr Ta, AD)

PROPELLOR DOMAIN. Consider a propellor on a ship (2, p. 65, 30, p.57).
The propulsion power W (ft 1bf/sec) to move the ship is the product of ship
thrust or drag F ft and ship velocity vg. This is equal to the power delivered
by the propellor which depends on propellor velocity Vps diameter D, speed
N, and fluid density p, viscosity pf. For a ship on the surface gravity, g is
involved in wave action. The conversion factor g2c is needed for 1bf and

Ibm present. '

ShiE Thrust
a ' c d ' e f
1bm b( £t > ( 1 ) ( Ibf sec> ( £t )
T - C(p ft3 ) (D 1) "\vp sec/ \Ns sec/ \Mf T2 'S sec

1bm ft g( ft h
Ec 1bf sec? E sec?

Bf  l=e-g g=e-1
Ibm 0O=a+g=a+e-1 a=1-e
sec O=-c-d+e-f-2g-2h

O=-c-d+e-f-2e+2-2h

0=-c-d-e-f+2-2h c=-d-e-f+2-2h
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PROPELLOR DOMAIN

ft 0=-3a+b+c-2e+f+g+h
0=-3+3e+b-d-e-f+2-2h-2e+f+e-1+h
0=-2+e+b-d-h b=2-e+d+h
1 -e 2-e+d+ h -d-e-f+2-2h d e
F=C) "M (vp) (N 6) ug)
f e-1,.h
(vg) (gc) (g)

Fgc . hegc \ ¢/ NgD d Dg h Vs f
p D? Vp2 - pva Vo Vp2 vp
Eu = c(Re)'e(Sh)'d(Fr)'hu\/xa)'f

Propellor power with non-viscous fluid. For a propellor of diameter D
and speed N moving a fluid of density p:

[ it lbf) lbm)a b< 1 >d< Tbm ft >g
W - cfp e 1 Jtbm ft
\" “sec T (D ft) Ns sec/ \BC Ibf sec?

bf 1

-1

]
1
g
o
I

1bm 0=a+g=a-1 a =1
sec -1=-d-2g=—d+2 d=3
ft l=-3a+b+g=-3+b-1 b=>5

W =C(p) (DY(NY (gc)
'Wgc
pD *NZ, -

X 3
( Wgc )(Vt )
2
pD? v/ \DNg

<FNSDgC\/ vt >3 L

pD? vt3/'\DNs

Fgc ve \'
pD?v2/\ DN

(Eu)(Sh) =

i
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PROPELLOR DOMAIN

The final equation is the propellor domain equation with Re omitted for

i absent, Fr omitted for g of wave action absent and Ma for velocities
absent.

Propellor power with viscous fluid. For a propellor of diameter D, tip

velocity v¢ and speed N moving a fluid of density p, viscosity pg and
velocity v:

a c d e
. £t 1b 1bm> b( ft 1 1bf sec)
W _ 2RI v
( sec>— C<p ft3 (D ft) (Vtsec) (NS sec) (Mf ft2

f

(v ft ) (gc 1bm ft2>g
sec 1bf sec
1bf l=e -g g=e-1
Ibm 0O=a+g=a+e -1 a=1-e
sec -l=-c-d+e-f-2g
-l=-c-d+e-f-2e+2 c=3-d-e-f
ft l=-3a+b+c-2e+ f+g
=-3+3e+b+3-d-e-f-2e+ f+ e-1
0=-2+e+b-d b=d+2-e
w=cie) Tt T %’ T ) Y ) (g0 !
-
pD2v2 /] = T\pvyD Vi Vi
FNgDgc ]
pD?v¢’
<p§§$t2><Ni?>: > C_(Re)c(Sl’l)d(l\/Ia)-f where Ma = (L_——Xtive\{zt(;:;t >
(Eu)(Sh) =

DN d
” S) for propellor is a constant. Adjust C so that
¢ .

But Vt = TI’DNS or Sh: (
d = 3.
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Wgc Vt3
Y 2 D" Ng

D Vi
Wgc
p D

)

H

FNgDgec v?
pD?v? [\D’N¢

(o) )

(Eu)(Sh)~

Eu = f(Re, Sh,

-

Ma)

>C(Re)c Ma)~

PUMP DOMAIN

Comparing to propellor thrust power with

non-viscous fluid,

viscosity is to add Re term,

the effect of adding

the effect of

adding velocity is to add Ma term.

This is the propellor domain equation with
Fr absent for g of wave action absent

PUMP DOMAIN., The pressure P developed by a rotary pump of diameter
D and speed Ng depends on gravity g, the velocity v leaving the pump, the
fluid density p and viscosity py and the conversion factor g..

1b

(-

Ez‘) = C<I~lf
(Dﬁfé

1bf sec @

1bm ft
€ 1bf sec

0O=a-2b-c¢c-e-2a+2

-2

c-e+ 2

1bf =a-g

lbm 0=d+g=d+a-1

sec 0=za-2b-c-e-2g
0 =-a-2b-

ft -2 =

O=a-b-c+f

P = Clug)® (g)°

(Ng) (p)

1-a

ft

2a+b-3d+e+f+a

-a-2b-c+2
(v)
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b 1 c
sec? Ng sec <p
g

3

(D)

1bm\& it \©
fit3 /. Vsec

g =a-1
d=1-a
e=2-a-2b-c

-2a+b-34+43a-a-2b-c+2+f+a-1

f=b+c-a

b+c-a a-1

(g¢)



PUMP DOMAIN

p _CHfgca@_szDc
pvi| ~ pvD v?2 v

Eu = C(Re) ® (Fr)™® (sh)°

f(Re, Fr, Sh)

]

Pump discharge. Rearranging the pump domain equation (24, p. 102)

sh € = f(Re, Fr, Eu)

V —
NgD/ ~
m( D\ _
4\NgD*/ ~
\'f
<"ﬁ'3‘> = f(Re, Fr, Eu)
S

where V = v 'Z' D’ = pump discharge, ft’/sec

Pump head. The pump domain equation may be rearranged.

(Eu)'

(o) - f(Re, Sh)

(gg) = f(Re, Sh)
VZ

H

(-5) = f(Re, Sh)

where H = head developed by pump, ft
D = pump diameter, ft

Specific speed. This dimensionless number (30, p. 227) is of interest
in pump performance. The pump domain equation may be rearranged
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RAYLEIGH NUMBER

s

and specific exponents assigned to Eu and Sh which may be rewritten

2 2.2
2 N D Ng D
(Eu)-] = (gV_H> = ( Sg; ) =< ;H > where 1 is in C

) .
A v B vnD _ Q ...
(Sh) " = <Ns D> = <—_——4Ns D3> = <NSD3> where ;4 is in C

(Specific Speed)* = (Eu)® (Sh)” = f(Re, Eu)

()

"\ gH Ng D?
Ng* D V2

" (gH)® (Ng? D%)

1 - ft3 )"
: s
Ng*v? <NS sec‘)( sec

T (gH) ( ft )3 3
& se

Noa/V

(Specific Speed) = W = f(Re, Eu)

RAYLEIGH NUMBER. This dimensionless number occurs in convection
heat transfer. It appears redundant in that it is a product of the more
basic dimensionless numbers Re, Pr and Bu.

Rayleigh For plane surfaces
Ra = Number = (Re)(Pr)(Bu) use H ft height

Dimensionless instead of D ft dia
= (Gr)(Pr)

(2 (3600 gB(AT 3(mY (36001 gB(AT)(
| P(F) ey gra| cprm | |DT(5) (36007 eBET)(cp)
- L (Hm)z k - p‘mk

_ + {m )

D (—,\;) gB(AT)[]3600 Cpp“fgc

or = 2, 2
i M8 k

2
D° (9) (3600)gB AT ¢,

kKpfge

2
3y(m 1bm < sec £t 1 \(  _Btu_
(D ft )< 7 > 3600 . > (32,2 sec7)<B Fabs)(AT Fabs) °p Tom F

- (k Btu 1bf sec ( lbm ft)
T A SIS B¢ Tbf sec?
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REDUNDANT NUMBERS

REACTION RATE. This property is a measure of the speed of chemical

reaction.

U = Reaction Rate

Ibm
m .
_ sec  (m 1
" m lbm (m)(sec)
. lbm
Pttt sec  p\ (L
- lbm (p sec)
P ¥t3 sec

REDUNDANT DIMENSIONLESS NUMBERS. Certain dimensionless
numbers appear basic in that they are the simplest dimensionless
numbers that represent the given processes. In the literature there

are many other dimensionless numbers that are less basic in that they
are more complex combinations of the basic dimensionless numbers.
Some of these are listed below. Because they add unnecessary complex-
ity, it would appear better to avoid the use of these redundant dimen-
sionless numbers. For more discussion see under name of dimensionless
number and Convection Heat Transfer.

Table Dimensionless Numbers in Convection Heat Transfer

Nature Name Equivalent Units
Basic Nusselt Nu hkl‘?'
pvD
Reynolds Re
MfEc
, c (3600)
Prandtl Pr pHf g;
2
Buoyancy Bu D wbal
pgvv
Shape Factor <%) <-]I;—)
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REDUNDANT NUMBERS

Table Dimensionless Numbers in Convection Heat Transfer

Nature Name Equivalent Units
D3 p%B AT ¢y, (3600)
: P
Redundant Rayleigh Ra = (Re)(Pr)(Bu)
kpgge
D’ p? gBAT
Grashof Gr = (Re)(Bu) =P BSOS
( pe2ge?
Cp pvD (3600)
Peclet Pe = (Re)(Pr) ”
Nu
Staunton St = (Re)(PT)
_Nu Kk
" Pe o pv(3600)
T D T 3 32_) ___Prhc
tz 7, = - —D =
Graetz Gz 4(Re)(Pr) T p vp \kL L
Table Convection Heat Transfer Equation
Redundant Basic Convection Heat Transfer Equations in
Dimensionless Terms of This Dimensionless Number
Numbers
L .
Nu = fcn (Re, Pr, Bu, B) Basic Eq.
L
Ra = (Re)(Pr)(Bu) Nu = fcn(Ra, B)
L
Gr = (Re)(Bu) Nu = fcn (Gr, Pr, B)
L
Pe = (Re)(Pr) Nu = fcn (Pe, Bu, 5)
Nu Nu L
t = —™— =T = —
S (Re)(Pr) - Pe Nu = fcn (St, Bu, D)
L
St = fen {Bu, D Alternate form
™ D
Gz = 7 (Re)}(Pr) I Nu = fen (Gz, Bu)
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REYNOLDS NUMBER

REYNOLDS NUMBER. This dimensionless parameter introduces the effect
of viscosity uf. The numerator contains a length term which may be
diameter D ft if there is a diameter or I ft if there is no diameter.

Re preferred units.

Re = Reynolds number, dimensionless

m lbm ft
pvD ( v ftd )(v sec)(D ft)

Tpgge [, 1bf se s) ( _1_‘9_12_@,)
(“f £t2 322 F sec?

where D ft can be replaced by L ft if L. ft is more significant.

Re in mass viscosity units.

Re = pvD - pvD
3600
1bm ft sec
_pvD 3600 _ (p F)(V E)(D ft)(3 600 =7 )
T ) Tbm
(Hm ft hr)

Re in alternate mass viscosity units.

( 1bm ft D ft
Re _pvD  pvD _ P73 J\V sec

TRfBc Hs ( 1bm>

Ms tt sec

Re in alternate ft per hr velocity units.

(22 2o )
3600 pvD _ p(3600 v)D pup D \P ft3) Hhhy

Re = =
(bm) bm b-m lbm_
Pm Frhr
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REYNOLDS NUMBER

Re in alternate mass flow units.

R pvD 3600
e =

Mm

<—r\f_—1) v 3600 D

Fm

bm (3600 ppg.

m lbm m lbm
(7{ Tt 2 hr> (L ft) <K 1b? hr) (L ft)
- 1bm T [ sec 1bf sec 1bm ft
<Hm ft hr) (3600 hr) (Hf ft? ) (32'2 1bf secz)

Reynolds Number in terms kinematic viscosity. The properties of mass
density p = (m/V) and viscosity (uf or Mfg.) entering into Reynolds
Number are physical properties of the fluid and are temperature-
dependent. For numerical evaluation of Re it is convenient to combine
p and pf in the form of a ratio (us/p).

D
Re = — <~ _
p
P
2
where (Mfgc) = kinematic viscosity, ft
p sec
1bf sec 1bf ft )
[ 2 . — et .
(Hf ft? )(3 2 lbm sec?

- 1bm>
p ft3

Reynolds Number units. The physical concept of Reynolds Number has
always been a little difficult with respect to dimensions because the
requirement that it be dimensionless is not completely compatible with
the very clear indication that the numerator pvL involves mass in the
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REYNOLDS NUMBER

terms of mass density p whereas the denominator involves viscosity
basically defined in terms of force (see Viscosity):

s 1b sec
Viscosity Fundamental Definition = pg ~?
To meet the dimensionless criteria most past procedure in the literature
has been to express viscosity in mass units in the denominator in order
to cancel the mass in the mass density term of the numerator. This has
made necessary the intorduction of the FF = ma law to express viscosity
not in terms of a drag force but in terms of the mass that would be decel-
erated by this drag force. The resulting term involving mass is:

1bm

Viscosity Fxpressed in Mass Units = pg Tt soc
* L s¢eC

The relation between py, and pg is obtained by introducing conversion
factors to form the dimensionally consistent relation (sce Viscosity):

Ms = RfEc

1bm _ 1bf sec 1bm ft
Bs ¥t sec) ~ \ME T ft2 Ec Tbf sec?

In order to preserve the physical concept of viscosity as a force the -
preferred form of Re is:

Re = 2¥L
Kf Ec

Not Preferred:

L
Re = &=
Ms
Most of the literature is rather loose in that precise units are not indicated
for Re as is done in ARDA dimensional analysis procedures. In the litera-

ture such terms as g, and J are often left for the reader to supply so that
Reynolds Number is somewhat indefinitely designated as:

Re = &YL
M
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REYNOLDS NUMBER

where:
p = density
v = velocity
L = length

B = viscosity

Sometimes (see Combustion Domain) where most of the concepts involve
mass diffusion and mass rather than force properties are involved, a
shorter solution is obtained by using Mm in Re = pvL/ Mm. but it should
be kept in mind that this is really an alternate sometimes shorter version
of Re = (3600 pvL/ugg.).

Re as flow parameter. A fluid in flow has the properties of velocity v,
density p, a viscosity force and a size dimension L. Reynolds Number

is a dimensionless parameter relating these properties. Several concepts
and derivations are possible.

Flow. In normal turbulent flow there is a general velocity v but
the individual fluid particles are in a highly variable flow pattern in which
their velocity is constantly changing in magnitude and direction as a result
of viscous drag forces of adjacent fluid particles.

Flow Model. It is convcnient to consider a model. A fluid particle
may be considered as a very small cube of length L on a side moving in
a given direction. It is continuously either accelerating from 0 to a
maximum velocity v in this direction or decelerating from a maximum
velocity v to zero by the action of viscous forces.
The maximum velocity may be considered to be L
the overall velocity of the fluid or at least related
to the overall velocity of the fluid v. The force
required to accelerate the fluid cube from 0 to v L
given by the F = (m/g_.)a law. The viscous drag
force is the viscous force due to viscosity defined
as the force 1bf on a plane area L’ ft? to move it 4
at a velocity v = LL ft/sec past another plane area
at a distance L ft from the first area.

Flow is also discussed under Flow Concepts and in the literature (28, p. 165).

Reynolds number as a force ratio. The force of deceleration is also known
as inertia force.
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REYNOLDS NUMBER -

(m)a

(Force of Deceleration) gc
Re = " =

( Viscous Drag Force) Al

M 1,

m(7)
A (F e

For a tube D is used for the size dimension L.

m’ z_lJ_)
(AL)A<L () oL

: -
. A(z) g, MEe

Reynolds Number as a stress ratio. The length terms in the numerator

of Re may be L or D.

v Ml vk 9

Re = = =
MfEc Mg Mg
(_}:) F 1bf
\a/ A ft?
- a\ ft
MY 1bf a sec?
AT
v
secC

Thus, Re may be interpreted as a ratio of forces per area to produce
acceleration of the mass of the fluid or inertial stress to the viscosity
or viscous stress.

Reynolds Number as an energy ratio.

_(KE Resulting From Acceleration of Cube from 0 to v)

(Drag Energy)
1 {m
3 (&)

i (F)avg drag (L)

1(m) ,
z(v)vv

Re
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REYNOLDS NUMBER

%psz3

Re <=5

chfL _2-
_pevh
MfEc

Reynolds Number as a viscosity parameter. It is desired to develop
Re as a dimensionless number containing viscosity puf. The ug units
are written in unreduced form as they exist in the basic physical concept.

Re

Reynolds Number
Dimensionless

(Numerator)
1bf ft sec
AT
/F 'll_‘.f\ /L__fi_
'\A ft )\v ft
_ sec

- 1bf ft sec
S ST

(2)53)
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Reynolds Number by dimensional analysis.

b c
a ft lTbm 1bf sec
1bm 0=c+ e
;l_]_o_f_ 0=d-¢e
sec 0=-b+d- 2e
ft O=a+b-3c-2d+ e

Re = C(L) (v) (0) () “(go) ©
m lbm ft
_C"EVL ¢ ~ (Vft3 ><V sec)(L ft)
I ITT Y-8 lbm ft

1bf sec

where both C and ¢ can equal unity.

c 1bf sec?

Reynolds Number as a property parameter.

)

)

C

REYNOLDS NUMBER.,

lbm ft )e
C 1bf sec?

e = -C
d=e=-c
b:d-Ze
= -c+ 2¢c = ¢
a=-b+ 3c+ 2d - e
=-c+3c - 2c+ c
=cC

D is used for L in tubes.

Viscosity is the property

uniquely appearing in Reynolds Number as compared to other dimension-
less parameters thus Re is considered as introducing the effect of

viscosity prf.
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SCALE FACTORS

SCALE FACTORS. True model similarity with a prototype is achieved
if each kind of dimensional number in the law expressing the physical
phenomena has the same numerical value (28, p. 170). Thus, a model
theory of scale factors may be formulated.

Scale factors. Using the subscript m to indicate model as compared
to the prototype value without subscript.

For some Fr

(Fr)y, = (Fr)

vin v2
Zm T £L

IFor same g

v;‘,’n v2
Lm L
VG
Ve VLlm

For same Re
(Re)m = (Re)

PmVmbIm  pvL

M) ()  HfBe

where (g.)yy = 8c. This is always true so gc terms will always cancel
thus can always be omitted.

pm _ v L _e__

(M)m  \Vm Lm/ s
L L \p
Lm Lim/rg

I

-

3 |“‘
\_,&J
P
k=
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SCALE FACTORS .

The relation between p and p; must be different (i.e., different fluid) for
the model as compared to the prototype. Viewed in a different aspect, for
same Re.

(Re)yn = Re

Pm Vm Pm pvD

P e 22
B

=1

1 vl DI
}-L' g ! = 1
>C
) ) ) (property)model
where the prime is used to denote the ratio .
(PropertY)prototype

The last relation must be true for similarity.
For same We

(VVe)rrl =We

2
Pm Vm LTm _pv2L

Tm(ge)m ) Tg.

pm_ \4 2 L P_
Tm Vm) (L )T

where (g.), = 8¢

F
Fle
g

S (Y 2

- () 7
The relation between p and T should be different for model as compared
to prototype.

These similarity considerations must be carried on through other dimen-
sionless numbers if present.
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SCALE FACTORS

Scale factor ratios. The similarity conditions that a model must
satisfy as compared to a full-scale system can be expressed as

the requirement of equality of appropriate dimensionless products.
These result in conditions to be imposed on the various physical quan-
tities involved can be expressed in the form of scale factor ratios,

Dimensionless number as a ratio of scale factors. For similarity

the appropriate dimensionless numbers of model and prototype must
be equal.

(Eu)m = Eu
Frn(gc:)rn Fge

2 2: 2 2
Pm lln Ym pL v

) (=)
(=) (32 (=)
g
P (LE(vE |

(property) . det
(property)prototype

where the prime dcenotes ratio

The dimensionless number for scale factors with primes is exactly
similar to the original dimensionless number, thus any dimensionless
number is also an expression of scale factors.

For the same Fr

(Fr)y, =Fr
v2, v2 v v?
m Im &L o gm L gL
(=) ()
Fm) (Em) © Zm) (L)
g L ( g L
v (v')?
o L (g') (L")’
(v')) = g' L vi= (g2 (L)%

On the surface of the earth g' = 1.
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SCHMIDT NUMBER -

Where several dimensionless numbers are involved, the several resulting
scale factor relationships apply jointly.

Another illustration of scale factors is given under Flow Through Orifice
Produced by Gravity.

SCHMIDT NUMBER. This dimensionless number expresses the diffusion
of one material into another as expressed by the mass diffusivity D, .

(Schmidt Number>
Sc = . .
Dimensionless

1bm

_ < Hm )_ Pm ft hr
- p Dm - 1lbm f_t_z
(p 3 ) (Dm hr

Derivation of Schmidt Number. It is desired to develop Sc as a dimen-
sionless number containing the mass diffusivity D,. The Dy, dimensions

are written in unreduced form as they exist in the base definition (see
Diffusivity)

(Schmidt Number)
Sc = . .
Dimensionless

_ (Numérator)
- lbm ft3 ft
m hr 1bm ft2

( 1bm )
Pm ¢ty
ibm
P —ft_3)
1bm ft3
M hr lbm ft

(where numerator has same
units as denominator)

(i) 2
_\p /hr (Momentum Diffusivity)
(D _f_t_2_> - (Mass Diffusivity)

m hr

:(pm>_ (1 725 )

P Dm B ____1bm( fii
(p ft3'> b hr«)
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SHAPE FACTOR

SHAPE FACTOR. Dimensionless numbers of the following form may

be termed shape factors.

Shape Factor
SF ={— :
Dimensionless

(L ft)
D ft

Dimensional analysis makes no distinction between properties having
the same units as for example length L ft, diameter D ft, width D ft,

roughness e ft, etc. Where such properties enter into the functional
equation

X =fen (L,D, We ....... )

the analysis will result in

X = C(—% ..... if only L and D are present or relationships
of the form
L W e . .
X = C(D ' DD if more properties are present.

In fact simplicity in treatment may be obtained if more than one
property of the same units is omitted from the functional relationship,

the ARDA analysis carried out and any pertinent term such as
L W
D 3, ER , etc. inserted in the final relationship.

Pw

Properties having same units. For the reason previously discussed,
dimensional analysis cannot distinguish between property symbols
having the same units such as L ft or D ft. For this reason such
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dimensionless numbers as Re may be interpreted as either

SHEAR STRESS

D L
Y2 .Y

P Hm

A decision as to whether D or L is to be used must be based on the

physical concept of the process involved.

Similar problems enter in the dimensionless numbers such as Euler

Number.

_ Fge
" pAv? or

APg.

pv?2

Pg.
pv?2

Eu

etc.

SHEAR STRESS IN PIPE. This is usually a boundary shear stress.

Sl—bf-:C(v {t >a D ft b lbrn)C 1bf sec)d
ft2 sec ( ) (p £t3 (“f £t2
Ibf  1=d-f
=d+ ¢
lbm 0=c+f
f=z-c=-1-4d
sec 0 =-a+d-2f
=-a+d-~-2d+ 2
ft -2=a+b-3c-2d+e+f
-2=2-d+b-3+3d-2d+e+d-1
=b+d+ e
s=ce’ "D 0 T Ypter e T
Sg d e

c_c Hfgc> e
v2p pvD D

Eu = f(Re)<%>
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SHIP DRAG

Ibf . . : 1bf Sgc>
The shear S Tz 1S dimensionally the same as P iz SO that (Vi’p

. . . Pg. Sgc
dimensionally is the same as > = Eu. The term (——} has been
vp vp

called a Fanning number, but there seems to be little purpose in
introducing another name.

SHIP DRAG. This is a classical problem in dimensional analysis
(3, p. 61, 19).

The shortest solution is by Flow Region 2 of the general Drag Equation.
Alternately a solution by basic ARDA principles follows.

Drag on a ship. The drag force F on a ship is assumed to be a function
of various properties as follows.

Drag = f(viscosity, gravity, velocity, density, length, gravity

constant)

s

This may be expressed in engineering units:

a b c d e f
1bf sec ft ft 1bm lbm ft
F b =C (Hf ft2 ) (g sec2> (V sec) (p ft3 ) (L ft) (gc 1bf secz)
where . (A)

f
g = local accleration of gravity, 32.2 ;i—; , on the surface of the

earth

1bm ft

g. = gravity constant, 32.2 Tof sec? valid at any location in the

universe

The individual unit-properties and exponents on each side of the equation
must be equal. For example, for 1bf

bf' = 1>~ f

Writing the equality for the exponents alone, for each one of the unit-
properties such as 1bf, lbm, sec and ft:
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Ibf 1 =za-f

lbm 0=d+f
d=-f=-a+1

sec 0=a-2b-c¢-~2f
=a-2b-c¢c-2a+2
c=-a-2b+2

ft 0=-2a2a+h+c-3d+e+f

I

-2Za+b+2-a-2b-3+3a+e+a-1

a-b-2+e
Substituting these values of f, d, ¢ and e in Eq (A)
a-2b

(p)
b

1 -a 2-a+b

F = Clug*(2) ()% (L)

Fgc hrgc\” Lg)

(VzL2 p) = C(LVp) (-72_
1

(Re)” (Fr)

(E'll) =C b

This may be variously written,

(Eu) = f(Re, Fr)

212
F = f(Re, Fr) 122
C

2712 .
- (Eu) v:Lp

C

) 89 contd
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f=a-1
d=1-a
C:Z-a—Zb
e=2-a+b
(g)* (B)
(C)
(D)
(E)
(F)
(G)
(H)



SIMILARITY

where:
Fgc Cp
Eu = Euler number, dimensionless = \———)=(——
v2Lp 2
i i Lvp
Re = Reynolds number, dimensionless =
Mf 8¢
2
Fr = Froude number, dimensionless = (-]%é-)
A = wetted area, ft2 = 1.2
a, b, ¢, etc. = exponents which must be empirically evaluated.

SIMILARITY. As a summary it may be stated that dimensional analysis
and similarity are closely related in that dimensional analysis yields
dimensiontess numbers and two configurations are similar if the physical
phenomena pertaining to the configurations can be expressed by the same
equation expressed in dimensionless number form.

As a further thanalht  forn mAanfimaiwntlnmm aen et o it e mman A LR S A

properties expressed by a dimensionless number, if their dimensionless
numbers of this property are the same. As a well-known example, two
configurations having the same Reynolds number are similar with respect
to the property expressed by Reynolds number.

Detailed considerations of similarity. Dimensional analysis and similarity
are closely related. Two systems are similar with respect to the proper-
ties given in the physical law, if the same physical law is applicable to
each system. Dimensional analysis is a procedure for formulating in a
systematic simplified manner, by the use of dimensionless numbers, these
physical laws to include multiple properties. For example

C = <_|iLV—gL—) = (Reynolds Number)
\FMf &¢

is a formulation of C = f(pv,L,jus.gc) that expresses the relation between
viscosity and certain other properties. If this relation is applicable to
the two systems, the systems are similar with respect to these proper-
ties, but only the properties given. If properties are involved in other
manners, additional relations are involved. If a drag force F is required,
an additional parameter must be supplied to include its relation
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SIMILARITY

Fgc pVL a
2] = C( )
pAV MfEc
Eu = C(Re)a

would include this effect. If surface tension is involved the relation
becomes

Eu = C(We)® (Re)’ etc.

Because there are an infinite number of properties, it may be considered
that the complete defining equation would have an infinite number of
terms. However, under certain conditions only certain parameters will
be important and dominant. Others will be less important or negligible.
Thus for convection heat transfer

a
Nu = C(Re)® (Pr)° (Bu)© %)

Thus if the dominant dimensionless number parameters are included
and the effect of other parameters are negligible two systems are
similar if the same equation governs.,

Practical similarity constraints. As a physical law the coefficients C,
a, b, ¢, d, etc., must usually be established empirically. A given set
of numerical values is valid over limited ranges of numerical variation
of the parameters suchas Re, Pr involved. Use of the equation beyond
these limits is subject to the usual uncertainties of an extrapolation in

that the coefficients probably change. Thus similarity of two systems

is restricted to the numerical range limits of the parameters involved.

For example, if two systems are known to be governed by the same
physical equation involving a Reynolds number in the range between

1000 and 2000, the systems are similar in this range and not necessarily
similar at Re = 4000. Thus arises the statement that true model
similarity will be achieved if each kind of dimensionless number in the
physical law expressing the physical phenomena has the same numerical
value (or range of numerical values).
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SIMILARITY

Dimensionless number limits, It follows immediately that any equation
in dimensional number form should have the constraints stated as
numerical ranges of the dimensionless number parameters for which

the equation is valid. For each parameter these ranges also depend
upon the ranges of the other parameter which means that a dimensionless
parameter equation should include all dominant parameters.

Empirical evaluation. Dimensional analysis seldom establishes the
numerical values of the coefficients. This must be done empirically.
As a practical procedure this can be done in a given system by holding
as many dimensionless numbers as possbile at a constant value and
successively varying one to establish its coefficient and exponent.

In this manner dimensional analysis permits organization in the formu-
lation of physical laws from test data. The test data may be a limited
number of values in specific ranges.

Determination must be made of the physical properties governing the
process from past knowledge or from tests. This is a skill developed
from a study of the application of dimensional analysis to many systems.,

Additional thoughts are given under the discussion of the Associative
Method.

Model Similarity. True model similarity with a prototype is achieved if
each kind of dimensional number in the law expressing the physical
phenomena has the same numerical value. Thus a model theory of scale
factors may be formulated. See under Scale Factors.

SIMILARITY DIMENSIONLESS NUMBER CRITERIA. Similarity with
respect to certain physical properties requires equality of corresponding
related dimensionless numbers. This is because the physical property
occurs only in the particular dimensionless number or because it is a
dominating factor in the dimensionless number. The physical property
may also occur in other dimensionless numbers which are omitted if
their effect is zero, negligible or small.

This required equality of dimensionless numbers for similarity may be
variously expressed. One method is utilizing scale or scaling ratios

R.

(Dimensionless) _ (Dimensionless
Number model Number prototype
N =N
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SIMILARITY

(Property) 1 A
where primes denote a scale factor of mode = Arn
(Pl‘operty)prototype
A, B, C denote terms in the dimensionless number.
As an example for flow:
N
-
BfEc
For flow similarity:
(Pm Mm Lm>
Tt T, Re
Re' =-LY—L-‘7 representing = - BfmEcm
M Be Re QVL
MfEc
where:
Re' Rep, (Re) model . Pm Pmodel otc
= = 5 p = = 3 .
Re (Re)prototype e pprototype

g.' and similar ratios of constants are always =1

At same location ratio of g =1

Any units of property may be used because conversion factors

cancel out.

Use of the preceding notation simplifies similarity problems considerably.
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SIMILARITY

Similarity requirements in fluid flow. A following presentation indicates
possibilities in formulating similarity requirements in the fluid flow
domain. The relations are fundamentally the same whether considering
a stationary body in a moving fluid (ships, piers, aerodynamic configura-
tions or in fluids such as water or air) or moving fluids related to or
contained in stationary walls (spillways, dams, pipes, pumps).

Flow of fluid particles. In general the motion of fluid particles is
influenced by the result of actions of gravity and viscosity. The action

of gravity tends to cause a fluid particle to tend to move downward. The
action of viscosity tends to cause a fluid particle to deviate from straight-
line motion in the direction of flow. Either or both these actions result
in a movement (microscopic) of the individual particles with constantly
changing velocities in constantly changing directions. However, an overall
velocity (mdcroscopic) in a given direction of the fluid or object is
produced which is the velocity v in the equations. This velocity v is a
function of Froude Number Fr = (v?/gL) for gravity and or Reynolds
Number Re = (pvL/pfg.) for kinematic viscosity = (uf/gc).

Effects establishing velocities, For flow regions where gravity g effects
predominate over viscosity effects; such as partially-immersed ships on
water, flow of water over dams and spillways; the Froude Number Fr

establishes the law governing flow velocity v. Gravity g is not to be
confused with the constant e

For flow regions where kinematic viscosity (p/ug) or (p/pfg.) effects

predominate over gravity effects; such as bodies fully immersed in
fluid such as aircraft, submarines, gas and fluid flow in pipes; the
Reynolds Number Re establishes the law governing flow velocity v,

For flow regions where both gravity and viscosity are important both
Froude Number and Reynolds Number, such as perhaps partially-

immersed objects in high viscosity fluids, etc; both Fr and Re establish
the flow laws.

Dimensionless number ratios. When two dimensionless numbers govern,
similarity requires that numerical values of the corresponding dimen-
sionless numbers be equal. The ratios of corresponding dimensionless
numbers will always be unity. This means that when two or more dimen-
sionless numbers govern,their ratios to any power may be combined by
multiplication in any fashion desired. This is true because one raised

to any exponent is always one.
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SIMILARITY

The exponents of the ratios of dimensionless numbers for combining
by multiplication are usually selected in such a way as to eliminate
some property from the combined terms, usually velocity. Re and Fr
ratios are therefore usually combined as

Each (92 v2 Ij) )
2 Rf2 82 2qL
‘Ferm Re® = f 2C = P =) =1 (velocity v eliminated)
is Fr v Me28 ¢
ratio gL

In the preceding the primes denoting ratios of (property)odel’
(propertY)prototype have been omitted to avoid the confusion of
designating every term with a prime, but with such omission the equa-

tion should be so designated so that ratios of each property will be
inserted when the equation is used.

Fuler Number. The Euler Number Eu is essentially a conversion
factor usually used in similarity to convert velocity v to drag or force
F or to pressure P (= force per unit area).

F P
Eu :( g2C2> _—_( gc) = 1 if each term is a ratio.
pL*v pv?

The Eu number has characteristics similar to g, except that the
numerical value of Eu varies with the data whereas the numerical

value of g_ is a constant. For similarity the Euler Numbers must
also be the same so that the Euler Number Ratio = (EW)model/
(Eu)prototype = 1. This is also true for g, in that g¢ cannot be different
for model and prototype. The ratio of gmodel/gprototype is usually

unity also (but not in the new field of space exploration).
Thus whenever it is desired to express Fr or Re ratios (or any other
dimensionless number expression such as (Re?/Fr)) in terms of force,

the dimensionless number may be multiplied by Eu to any power.

Useful combination in problems involving drag requiring a conversion of
viscous effect Re to force by the introduction of Eu are

\ 3
Re and Re?Eu = p;VZ i} < F%C2> = E;p =1
Fu wf ge /\pL7v b’ 8c If
Fg. o2 Fg. - Each
Fr and Eu Fr = Lz V2 ——L— = L3 =1 Term
Eu p g P8 Is A
kY Fgc v3 (Fv)egc Ratio
Eu Fr2 = =) =1
0 L2 V2 g3/2 LB/Q p L7/2 g 3 )

where (Fv) = power.
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SIMILARITY

Strouhal Number. The Strouhal Number Sh is essentially a conversion
factor, useful for pumps for example, for converting velocity v to pump
speed that will produce that velocity. Pumps usually pump viscous fluids
with negligible gravity effects, so that Re and Sh is usually the combina-
tion of interest. The length dimension of significance in a pump is rotor
diameter D.

NgD Ng D?
Re and (Re)(Sh) = <;va;>< SV > = <pH Sg > =1 if each term is
Sh f&c fsc

a ratio

Weber Number. Under conditions of capillary flow surface tension
effects appear in terms of the Weber Number.

Tabulation. The following tabulation summarizes relationships. Similar
tabulations could be made up in other domains.
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Fluid {low similarity.

SIMILARITY

Relative Motion

Fluid and Solid

|

l

Pamp
It Terms v
si = NgD
v

Viscosity Effect
In Terms v
vL

Re =

!

i

Gravity Effect
In Terms v

v2
Fr = |—
' (gL>

Force Effect
In Terms v

Fge
Eu = <pL2 V2)

=(ch
pv?

I

Viscosity In Combined Gravity Effect
Pumps ViSCOSitY In Tezms F
pN g D2 And Gravity Fg
Re Sh = (—————-—) Re?  (p? g L3\ EuFr = 3C
M e Fr = (Wgc?) P e

Surface Tension

In Terms v

We =221
Tge
Re = Reynolds Number
Fr = Froude Number
Eu = Euler Number
We = Weber Number
Sh = Strouhal Number

Viscosity Effect
In Terms F

Re? Eu = (——52;9—>
i B¢

Gravity Effect
In Terms
Flow
rate V = VL2
2

Fr = gL5

—

'

Gravity Effect
In Terms

Power = W
3/2 Wg(‘
Eu(Fr) = m—‘

Force Effect
In Terms Power

= W: Fv :'Ei-“
t
L
v o= pl;z V3
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SIMILARITY

Model pump example.

A model pump one and one-half times the size of
the prototype pumps air to simulate with respect to viscosity effects

the prototype pump pumping oil at 3600 rpm. The kinematic viscosity
of air is 16.0 x 1075 ft2/sec compared to a value of 200 x 1073 ft?/sec
for the oil. Determine the speed of the model pump in rpm for similarity,

ot Ns' (D) :
Re'Sh == 1 (where g.' = 1)
—— g !
(p> ¢
=)
AP Jm
] f —5
(“—) 3600(—————16'0X 195)
(N ) . 1. 200 x 10 =128 rpm answer
s (Drn>2 (]‘5)2 - P
D

Model pipe example. A pipe model in which water of kinematic viscosity
1.35 x 107 ft2/sec flows at 4 ft/sec is to simulate, with respect to viscosity
effects, a 20 in. pipe in which air having a kinematic viscosity (ug/p) of
16.5 x 107 ft?/sec flows at 7 ft/sec. Determine the proper model pipe
diameter in inches.

1.35 x 10°°
(e
Dm = D(%) v = -

7 =2.86 in. answer
3)

Example of model in viscous fluid. A 1/50 size model indicates a drag

of 3.15 1bf in water of viscosity 2.35 1bf sec/ft? and density 62.4 1bm/ft3,
For similarity with respect to viscosity effects, determine the drag of the
prototype in 1bf in air of viscosity 3.75 1bf sec/ft? and density 0.075 lbm/ft>.
!

!
(Re‘)z(Eu') = F,‘ > =1 where g.' =1, L' is not involved
(h£')?gc'

62.4
oo fmle) 3‘15(0.075)

= =0, f
(}J‘f'):, (2.35 x lo_5> 0 667 1b answer
3.75 x 1077
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STEFAN NUMBER

Ship model example. A 1/20 scale ship model tested in water has a
velocity of 8.30 ft/sec and a drag of 10 1Ibf. For similarity with
respect to gravity effects determine for the full size ship: (a) the
velocity in ft/sec and (b) the drag in 1bf.

(a) (Fr') =77 =1 (where g' = 1.0)

v
v o= Iin :8'130:27.1ft/sec answer
————m ——
L 20
Flge' where ! =
(b) Eu'Fr‘:—m:I i? _
pt =
Fmn <Lm>3
F O \L
F
Fo= Lms = 103 =10 (20)° = 80, 000 1bf answer
—=m —_—
= ()

Model with gravity and viscosity similarity. A 1/4 scale model is to
simulate a prototype with respect to gravity and viscosity effects. For
the same gravity determine the proper ratio of kinematic viscosity (us /g).

(Re')2_ g: (L)® -1 where g' =1
Fr! - ) 2 2 o1
T e .
1\2 ) 1 3
(-Hi') = (L')® thus <£> = (L‘)% = (i) :é answer
P P/m

STEFAN NUMBER. This parameter is more in the nature of a heat
transfer ratio than a dimensionless number obtained as a result of
dimensional analysis. Its use should therefore probably be discouraged.
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SOUND VELOCITY

Stefan Parameter
Sf = ] .
. Dimensionless

_ _(Radiation Heat Transfer)
~ (Conduction Heat Transfer)

Btu

A 4
(c T . >
( AT Btu)

kAZ—I-: hr

SOUND VELOCITY. Dimensional analysis is of little assistance as the
direct solution is shorter and better.

Direct solution. The general energy equation is applicable comparing
conditions at a point during and after passage of a kinetic energy sound
wave (15, p. 528) with PE, Q and (W/J) = 0.

KE = H
1 {fm\v?2
= |—)}=— =mh where m may be cancelled.
2 \ge/]J
Differentiating,
1 2v dv = dh where z may be cancelled
2 g J 2
where
v vV dv
= - f Az—=—
dv = (dV) v rom - -
= (mcliu J)% from 0 =dq =dv + Pr;%_‘l for an isentropic
mdulJ
dV = ———
P
or

(gZJ)(m %uJ>%: = dh where %may be cancelled

1

du/m

, (dh)PV
v clS -1

g.kRT
v = Vg kRT = velocity of sound in a gas
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Dimensional analysis solution.

sec

Ibf

lbm

F abs

KE = H

=
Pvk - C
S

CV

a
ft 1lbm
v sec =C <p {t3 ) (R

Btu
(CV 1bm F abs

-1 = -2f

0:b-f+g
1

_b-2+g

—
1]

-3a+b+f+g

-3a+f+b+g

1

1 1
—3a+2+2

O=za-b-d-e+f

1
0~b—d-e+2

0=-b+c-d-c¢e

-b-d-e+c¢

L,
_—2 C

b+ g

ft 1bf
1bm F abs

)

b

™=

N |

b+d+ e =

186

) (T Fabs) (c
)g

1bm ft
C 1bf sec?

N

SOUND VELOCITY

Applicable equations are:

Btu d

plbmFabs)
1
f:2
g=0
a=20
1
€ =2




STANTON NUMBER

Btu 0=4d+

[}

+ g
M o

1
[o N
+

=-b+(b+d+e)+b+(b+g)

1 1
= -b+=-b+= b =
bts-b+s

™ f—

1 1 _ 1
v=Cp R® T2 () (C) V(g )? (3

Cp)* Sp
- Vg RT |2 where =2 =k C =1
¢ CV CV

= \gc kRT

1
where d is assumed equal to —

STANTON NUMBER. This dimensionless number occurs in convection

heat transfer. It appears to be redundant in that it is a product of more
basic dimensionless numbers.

Stanton Number
St = . .
Dimensionless
(52)
(Nu) k
{(Pe) (3600 Cpva>
k
h Btl;.
B h N hr ft* F »
3600 C pv sec Btu lbm ft
P 2€c
(3600 hr ) (Cp 1bm F) (p ft3) (v sec)
®
(z%)
_ A AT
3600 Cp pv
_ _Nu
" Re Pr

Redundancy. The preceding is a form of the convection heat transfer
equation.

Nu = f(Re, Pr)
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STOKES LAW

Stanton Number as energy ratio. The Stanton and Nusselt Numbers can

be interpreted as similar energy ratios by multiplying numerator and

denominator by AT (4, p. 201). This is dimensionally valid but the AT
are different,

L S hD
3600 pCpv Nu =7
) h AT _ hAT
" (p CpAT) 3600y - (kAT)
D

(Total Heat Transfer)

_ (Total Heat Transfer)
" (Convection Heat Transfer)

= (Conductive Heat Transfer)

STOKES LAW. Stokes'law for the velocity of a sphere falling in a fluid

is
2|(w - ¥V 1iqui - BV
5 l:(v) sphere (V) 11qu1d} =R

2 (W) _ pv W\ _[m w _mg (g
) e ()-() ¥R )

c Ec
2 .
= /-g—— = E% where p is a difference of densities.
9 \gc) R
ft ( 1bf sec)(v ft )
E( lbm) € sec? _ Bf 52 sec
9 ft3 Ibm ft [ (R ft)?

C 1bf sec?

Expressed as a possible dimensionless number:

SIL - (S‘cokes Law Number)
- Dimensionless

. 2{|~Lfvgci\ (viscous force)
= 2 ————————— =

pRZg (gravity force)
nE 2
= ({pvg} {g—R} where D = 2R
1 1.7 (Fr)
= — |1 Fr: =
? {Re-\]t T ? (Re)
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STROUHAL NUMBER

STROUHAL NUMBER.

Ly

This parameter occurs in vibration pump and
propellor problems involving frequency Ng cycles/sec or N rpm. Sedov
(3, p. 58) incorrectly calls this the Strouhaille Number.

(Sh) :<St r'ouhal .Numbe r)
Dimensionless

cycles ft ) ( 1 ) < )
_ (Ns L) _ (Ns sec ) (L cycle/ N sec L ft
EER N = R
v — v
sec sec
rev ft 1
_ NL (N min) (L rev) (N min) (L ft)

60v (60 se-c )(v ft ) <60 se‘c>(V ft )
min sec min sec

Strouhal Number for propellors.

The ratio of forward velocity v to tip

velocity = NSD is of significance and results in an advance ratio
(24, p. 88).

ft
Advance Ratio = (NV D) = 1sec = %}
) e
sec

Dimensionally the advance ratio has the units of the reciprocal of the
Strouhal Number,.
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SUFFICIENCY

SUFFICIENCY. Dimensional analysis is a powerful analytical tool in
determining relationships, but there are grave limitations requiring

knowledge and judgement concerning utilization on a parituclar configu-
ration.

The kind of physical properties involved in a particular procedure must
be known either from experiment, analogy or perhaps a little intuition.
There is no guarantee of sufficiency. If all properties are not included,
the results will be faulty. If irrelevant properties are included, the
results will certainly be confusing and probably faulty.

The numerical constant C and the numerical exponents a, b, ¢, etc.,
are not determined and must be found empirically.

It may be expected that dimensional analysis equations will have limited
ranges within which certain dimensionless numbers should be confined
because of limitation of the domination of certain physical variables in
certain ranges. These ranges must be determined by experiment. For
example, the general convection heat-transfer equation may be divided
into certain ranges in which laminar flow, turbulent flow or natural-
convection physical properties and associated dimensionless numbers
are dominant.

SURFACE TENSION. Consider a needle-like ''line'" of length L in a
fluid surface interface. Surface tension (T 1bf/ft) is defined as the
force in the surface 1bf per ft length of line that acts to pull the line
apart. Ofthevarious symbols, T, y, o, in the literature T is
preferred.

Representative surface tensions (Ref, 11) are:

Substance Temperature T gmaszs T 1bf

sec ft
Water 68 °F 72.75 0.00498
Mercury 68 °F 484 . 0.0356
Helium -272 °F 0.147

When in contact with a solid the direction of the surface tension force
depends on the contact or wetting angle, 6, as shown in the figure.
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SURFACE TENSION

Solid Phase

SURFACE WETTING

Surface tension as work per area. A second aspect is of significance.
If this surface tension force acts through a distance, surface tension
may be thought of as the work TL required to create new surface area,
for instance, expanding a bubble. '

_F1bf L ft (FL ft 1bf (FL) 1bf
TOAft2 T NA) ft? T \A) ft

One proof of this bubble expansion is as in the figure.

Entering R
dR — 3\ \e—
»> Bubble Internal
X 2T
Pressure = —
Flow Energy R

Surface = 41rR2

BUBBLE EXPANSION
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SURFACE TENSION

A bubble of radius R expands dR in radius or dV in volume requiring a
work FL equal to the flow energy P dV entering through an imaginary
duct. This produces new bubble surface.

F 1bf L ft _ P dv
A ft2 T 4n(R + dR)? - R?

2T 2
R (4wR°)dR
47(2R dR + dR?)

where the second order dR? may be neglected as negligible.

8T wR dR
8wR dR

=T

Surface tension conversion. The preferred units of surface tension
are T force/length. The literature sometimes gives surface tension

values in mass units T, mass/area = T/g.. The conversion factor
is

2

(1 grammass) (1 grammass)(looo gkr;lff) (2.54 _f_gl) (12 _1_11_)

sec 3 sec ft
gc - gmf >< gmmass) kgm cm
(453 bt 1000 kgmass 81 kgf sec?
_ 6.85 Ibf
T10° it

Expressed as a conversion factor:

Tm> <1b£>
] = (gc _ 6.85 ft
T N 10° <grammass)
sec

Pressure of surface tension. A stationary bubble immersed in its own fluid,
such as an air bubble in air, has an internal pressure as a result of surface
tension holding the bubble together as in the figure.
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SYMBOLS

Volume Sphere = ﬁ;— R’ = %‘ D>
2 p’
Surface Sphere = 47R" = Tr4

STATIONARY BUBBLE PRESSURE

The surface tension T around a circumference wD contains the internal
2
pressure Pp over an area wD"/4.

SYMBOLS GENERAL. Special symbols are defined at the place where
they are used. General symbols are as follows:

a = acceleration

. .. 2 k
a = thermal diffusivity, ft°/hr = (——)
A = area, ft? frequently A = L?

B

coefficient of volume expansion ft3/ft’F abs
C_ = specific heat and constant pressure, Btu/lbm F abs
C = any constant in general. Usually dimensionless

D = diameter, ft. In expressions not having diameter use L

equivalent diameter for conduits = 4A/P
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SYMBOLS

Dy, = mass diffusivity, ft’/hr

E = electric field strength, volt/ft

f = fen = function of

F = force, 1bf

'E = flow energy, ft lbf

g = gravity acceleration = 32.2 ft/sec? on surface of earth
g. = acceleration constant = 32,2 lbm ft/1bf sec?
h = surface heat conductance, Btu/ftz‘hr F

H = height, ft

H = magnetic field strength, amp/ft

I = electric current, amp

J = conversion factor, 778 ft 1bf/Btu

Jm = metric conversion factor, 0.738 ft 1bf/joule
k = specific heat ratio, cp/cv, dimensionless

KE = kinetic energ.y, ft 1bf

L = length, ft. May also use diameter D

m = mass, lbm

Ng = revolutions or cycles, 1/sec

N = revolutions per minute, 1/min

P = perimeter, ft. Wetted perimeter or perimeter through which
heat flows

P = pressure, 1b/ft?

PE = potential energy, ft 1bf
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g = electric charge, coulomb = amp sec

q = heat valve, Btu/lbm

Q = heat, Btu

Q = energy, joules = coulomb sec = amp volt sec

R = radius ft. Sometimes a length different from L

t = time, sec

T = o = surface tension, 1bf/ft

T = temperature, F abs

AT = temperature difference, F or F abs
U = chemical reaction rate (lbm/sec)/1bm

v = velocity, ft/sec

SYMBOLS

vg = reference velocity, frequently velocity of sound, ft/sec

V = volume, ft3
V = electric potential, volts
w = weight, lbw
W = work, ft 1bf

A = difference such as AP, AT, Ap, AV

p = (m/V) = mass density, lbm/ft®
N = molecular free path, ft
p = viscosity, expressible in various units. See Viscosity

pg = viscosity in basic units, 1bf sec/ft?
Hm
= magnetic permeability, 1bf/amp?

Fp
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SYSTEM OF UNITS

electric conductivity, amp/volt ft

electrical permittivity, amp? sec?/1bf ft?

Dot over symbol signifies per sec, thus V ft3/sec, W ft 1bf/sec, etc.

SYSTEM OF UNITS.

It is customary to adopt dimension systems in which

certain dimensions are fundamental and to assume that the remaining

dimensions are derived from these basic dimensions,

It is thus possible

to assume any basic dimension from one dimension (usually time) to an

infinite number (no derived dimensions).

mlt System 2. FLt System

m mass F force

L length L length

t time t time

T temperature T temperature

(F force, H heat, etc. (m mass, H heat
expressed in terms of expressed in terms
m, etc. F, etc.

mLtH System 4, FLtH System

Add H heat to
System 1

Add H heat to
System 2

FmLtH System

This system, in increasing present use, is
compatible with the present tendency to clearly
distinguish 1bf from lbm with a corresponding
reluctance to express lbm in lbf units.

6. Two Dimension Lt System

This system is not in use but is given as an illus-
tration that a so-called measuring system may have
any number of dimensions providing certain funda-
mental physical laws are used. If the fundamental
acceleration law F = ma is used to eliminate F by
expressing it in terms of m, the additional funda-
mental gravity law F = mM /1.2 may be used to
eliminate mass so that both force and mass may

be eliminated to express mass in terms of

time and distance only,
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Typical systems are:

Basic
Equations
Required
Are
F = ma
H=FL

Basic
Equation
Required

Is F = ma

No
Basic
Equation
Required

Basic
Equations
Required
Are
F = ma
H=FL

mM
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THOMA NUMBER

M = al? in<
se

ft ft®
2)(ft2> or t 7 units
c sec

THERMAL DIFFUSIVITY. This number occurs in transient heat
transfer involving conduction and heat capacity.

k
Pcp

(k Btu ft )
ft?2 hr ft2 F

a B—; = lbm) (c Btu )
T P Ibm F

THOMA NUMBER. The Thoma number is related to pump cavitation
(see Cavitation).

a =

Thoma Number
Th = ] .
Dimensionless

P _ (P - Py) psia
AP - (P2 - P]) psia

where

P = (P, - Py) = allowable pressure reduction of fluid because of
velocity

AP = (P, - P|) = pressure difference across pump
psia = pounds per square inch absolute

P, = total inlet pump pressure (or possibly centerline of pump)

P, = total outlet pump pressure

P, = Vapor pressure of liquid

UNIT SYSTEMS. See System of Units. ‘
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VELOCITY PRESSURE

VELOCITY PRESSURE. A fluid moving at velocity v possesses a kinetic
energy KE as shown in the following figure. When brought to rest by an
impact tube, the energy becomes flow energy FE and exerts a velocity

pressure P,. Conversion is then made to potential energy PE as in the
figure.

PE
FE
| !
| H
KE l
—>

KE TO PE CONVERSION

FE = KE
1 2

PV _lmy
2 8¢

Pv = (velocity pressure, E;)

—I-'I;n—v2:—1'——=WH=W_P
2\g. 2 g w

W
because P = H(V) .

m . 1bm
where p = v/ = mass density, T
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VIBRATION

VIBRATION. For vibration of fluids Ng, confined by walls w having

radius R and length L, Chamberlain (25) gives the following. Usual

notation is employed with vf and vy the velocity of sound in fluid and
walls respectively and P the pressure of sound. The vibration effect
VE is presumably equal to 1. The energy absorption E is defined as
mv? where m is the mass and v is the spatial maximum mean square
flexural velocity of the section under study.

a b c d e f
1bf 1 1bm 1bm
VE =C ( ft2> <Ns —sec) (pf 7 ) (pw TSN ) (R f’c) (L ft)

ft )g (v ft )h (E b £E2 )‘ lbm ft )J
YW sec fsec M Sed? Ec 1bf sec?

1bf 0=a-]j j=a
lbm O=c+d+i+] c=-d-i-a
sec 0=-b-g-h-2i-2j
=-b-g-h-2i-2a b=-g-h-2i-2a
ft 0=-2a-3c-3d+e+f+g+h+2i+]j

1]

-2a(+3d+ 3i+3a)-3d+e+f+g+h+2i+a

2at+et+f+g+h+ 51 e=-2a-f-g-h-5i

a -g ~h-2i-2a i-a d -2a -f-g-h - 5i
VE = C(P)" (Ng)® : )R E 1

(o) ¢ "
(L) (v)® (v (®) (g)?

V'E—c———fpgC WA AV VAR T,
T UA\NG peR pr /] \R/ \NJR/ \N(R \{\I;’prf‘

VISCOSITY. In the literature the symbol p is generally used to represent
viscosity, regardless of the units in which it is expressed. In this text,
subscripts are added to indicate viscosity expressed in particular units.

Fundamentally, viscosity is defined as a shear-force or stress required
per unit area to produce a velocity-gradient or shear-rate expressed as

a unit-change of velocity at a unit-distance from another shear plane as
shown in the figure.
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VISCOSITY

ft -——-—,»/ A ft? F 1bf
secC

i‘ 1bf sec __,,;_j

e BT _ L ft

In order to avoid inertia effects, the fluid is considered to be in laminar

(also known as streamline or viscous) flow. Thus the engineering units
are:

(h a t _l_b_{) hear st M)
(Viscosity shear stress 2 . she ress 2

Of A Fluid> - T —
v =
velocity gradient —_S€¢ shear rate t sec

L ft per ft L ft

<pf 1bf force>
1 ft? area

per

pfe shear force 1bf >
unit area of plane ft?

= per = F ft
unit velocity of plane > (1 coc velocity)
per :
t d
unit dist from next plane L (1 ft distance)
-
_ Ibforce\ [ ft distance (ng_f_) (ft sec)
M ft2area | ft ) = M\ fe2 ft
— velocity L
sec
[ Ibf sec
= p‘f ft2

A Newtonian fluid is one in which the viscosity p is independent of the
fluid velocity v.

Viscosity is fundamentally a drag or shear force and should be expressed
in force units as is done in the SI International System of units. Considered
as an isolated dimension or property, to express it in terms of an amount
of matter tends to obscure its true nature. It therefore appears best to

distinguish p¢ from pu,, and to use Mg in force units in dimensional analysis,
a procedure different from conventional procedures.
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VISCOSITY

Viscosity is sometimes called absolute or dynamic viscosity to distinguish
it from a so-called kinematic viscosity = (viscosity/density), a designation
that should be avoided as unnecessary.

For the notation of the figure the shear force F required to pull the moving

plane of A ft? at a velocity v ft per sec at a distance L from the fixed plane
A ft?is given by:

F 1bf

I
-
>
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VISCOSITY CONVERSION

VISCOSITY

= (metric unit)

p’c.p \

(”p poises) (100

cm sec

centipois e)

poise

ASymbo'I  val h _ 1322 lbm f{t Comments On
nd.Unlts Equivalent where g = 2 Thf sec? Symbol Of
In This Text
Column 1
( Jbm > centipoises is basic
1bf sec Pm f hr Hey P Mg
bf ft? = sec 1bm ft - centipoises prfaferred
3600 hr 32.2 1bf sec? [47800 1bf sec unit.
< ft? )
1Hhm sec 1bf sec lbm ft k {Frequently used.
: = =13 22— = —
g e (3600 Hfg‘) (JF)OO hr > (Hf ft2 ) (32 1bf sec2> (Pr) cp Undesirable
force guantity
(lbm) expressed in
ft hr mass units.
_ o 4y —Mthr/
(pcp centipoises)|2.42 (centipoise)
1bm _ ( 1bf sec) (32 > 1bm ft ) _ Mey centipolses Undesirable.
Ms ft sec? AP g2 "” 1bf sec?/ ~ 1488 centipoises Express as
( Ibm BfEc-
=3 ft sec
f' < 1bf sec) Undesirable.
" 1bf hr HE g2 Express as
h  f¢t2 = £
t <3600 —%‘3) T sec)
<3bOO hr>
Hcp centipoises | _ [centigrams of mass> _ Force expressed

in mass units.

ft?
sec

(%)

P

= (kinematic
viscosity)

b

lTbm (
S ft sec e

1bm ft )
1bf sec?

1bf sec\)
T (32.2

G

Tbm m lbm
ft3 v oft3

Undesirable.
Express as
MfEc

B
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WAVES

WATT. See under Joule Per Sec.

WAVES ON SURFACE. This was treated as a special case under the

Fluid Flow Domain to obtain:

H height

(L wavelength)z fen (Fr We)
Waves. For waves on the surface of liquids Ipsen (4, p. 166) gives:

(Fr) = (%)e (we)P

where:

(l—‘_) __(wavelength)
D/ ~ (depth of liquid)

This may be written in terms of Bond Number.

Bo = (Bond Nurnber)
Dimensionless

£9-6)
Fr/  \L
R GO
_\Tge /) \lPgc/\1J/\T/ 2/ T w
(.Vf.) ) v2 -1 T TL.
Lg Lg g
AAY (gravity force)
"~ \TL/ ~ (surface tension force)

WEBER NUMBER. This parameter introduces the effect of surface tension

T.

(We) = (Weber Number)
~ \Dimensionless

_pv?D
Tge .

b))

ft3

1bf 1bm ft
(T ft ) (32‘2 1bf sec2>
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WEBER NUMBER

The significant length dimension is given as L. In a particular
application other lengths may be more applicable. Sometimes a
diameter D is appropriate.

Surface-tension phenomena are involved in wave motion.

(We) as a force ratio. This parameter expresses the ratio of the inertial
force or force of acceleration required to accelerate a particle of fluid
to the surface tension force on the surface of the fluid (24, p. 93, 28,

p. 168). The Weber Number is therefore applicable to moving fluids
having a surface.

m
We < (force of acceleration) (gc) &
" (force of surface tension) = TL

m(tz) . %L(%>VL <pv2L>

T TLge TLg. Tg.

(We) as a pressure ratio. For a bubble relation velocity of bubble and
surrounding fluid produces a velocity process. Surface tension produces
an internal pressure.

(We) = 8(inertia pressure) _ (velocity pressure)
~ (surface tension pressure) (surface tension pressure)

8(velocity pressure at surface of bubble)
(inside bubble pressure due to surface tension)

8('1‘ £ ‘%
2 8¢ pv?D
5
D
WEIGHT. A mass under force due to the attraction of gravity tends to
accelerate in a downward direction. Its weight is determined by Newton

acceleration law written as a unit-consistent equation in engineering
units.

i

In general

204



Under gravity

RGO

where

w = weight, lbw

force downward, 1bf

WEIGHT

On the surface of the earth where g =32.2 ft/sec? an amount of mass

1 1bm exerts a force downward of 1 1bf.
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R-DIR :
R-TEST-DIR
R-TEST-C
R-TEST-C
R-TEST-S
R-TEST-SPS
R-P&VE-DIR
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